// ./src/fn/closures/capture.md fn part0() { use std::mem; let color = String::from("green"); // A closure to print `color` which immediately borrows (`&`) `color` and // stores the borrow and closure in the `print` variable. It will remain // borrowed until `print` is used the last time. // // `println!` only requires arguments by immutable reference so it doesn't // impose anything more restrictive. let print = || println!("`color`: {}", color); // Call the closure using the borrow. print(); // `color` can be borrowed immutably again, because the closure only holds // an immutable reference to `color`. let _reborrow = &color; print(); // A move or reborrow is allowed after the final use of `print` let _color_moved = color; let mut count = 0; // A closure to increment `count` could take either `&mut count` or `count` // but `&mut count` is less restrictive so it takes that. Immediately // borrows `count`. // // A `mut` is required on `inc` because a `&mut` is stored inside. Thus, // calling the closure mutates the closure which requires a `mut`. let mut inc = || { count += 1; println!("`count`: {}", count); }; // Call the closure using a mutable borrow. inc(); // The closure still mutably borrows `count` because it is called later. // An attempt to reborrow will lead to an error. // let _reborrow = &count; // ^ TODO: try uncommenting this line. inc(); // The closure no longer needs to borrow `&mut count`. Therefore, it is // possible to reborrow without an error let _count_reborrowed = &mut count; // A non-copy type. let movable = Box::new(3); // `mem::drop` requires `T` so this must take by value. A copy type // would copy into the closure leaving the original untouched. // A non-copy must move and so `movable` immediately moves into // the closure. let consume = || { println!("`movable`: {:?}", movable); mem::drop(movable); }; // `consume` consumes the variable so this can only be called once. consume(); // consume(); // ^ TODO: Try uncommenting this line. } fn part1() { // `Vec` has non-copy semantics. let haystack = vec![1, 2, 3]; let contains = move |needle| haystack.contains(needle); println!("{}", contains(&1)); println!("{}", contains(&4)); // println!("There're {} elements in vec", haystack.len()); // ^ Uncommenting above line will result in compile-time error // because borrow checker doesn't allow re-using variable after it // has been moved. // Removing `move` from closure's signature will cause closure // to borrow _haystack_ variable immutably, hence _haystack_ is still // available and uncommenting above line will not cause an error. } pub fn main() { part0(); part1(); }