gstreamer-rs/examples/src/bin/decodebin.rs

330 lines
14 KiB
Rust

// This example demonstrates the use of the decodebin element
// The decodebin element tries to automatically detect the incoming
// format and to autoplug the appropriate demuxers / decoders to handle it.
// and decode it to raw audio, video or subtitles.
// Before the pipeline hasn't been prerolled, the decodebin can't possibly know what
// format it gets as its input. So at first, the pipeline looks like this:
// {filesrc} - {decodebin}
// As soon as the decodebin has detected the stream format, it will try to decode every
// contained stream to its raw format.
// The application connects a signal-handler to decodebin's pad-added signal, which tells us
// whenever the decodebin provided us with another contained (raw) stream from the input file.
// This application supports audio and video streams. Video streams are
// displayed using an autovideosink, and audiostreams are played back using autoaudiosink.
// So for a file that contains one audio and one video stream,
// the pipeline looks like the following:
// /-[audio]-{audioconvert}-{audioresample}-{autoaudiosink}
// {filesrc}-{decodebin}-|
// \-[video]-{viceoconvert}-{videoscale}-{autovideosink}
// Both auto-sinks at the end automatically select the best available (actual) sink. Since the
// selection of available actual sinks is platform specific
// (like using pulseaudio for audio output on linux, e.g.),
// we need to add the audioconvert and audioresample elements before handing the stream to the
// autoaudiosink, because we need to make sure, that the stream is always supported by the actual sink.
// Especially Windows APIs tend to be quite picky about samplerate and sample-format.
// The same applies to videostreams.
#[macro_use]
extern crate gstreamer as gst;
use gst::prelude::*;
#[cfg_attr(feature = "v1_10", macro_use)]
extern crate glib;
use std::env;
use std::error::Error as StdError;
#[cfg(feature = "v1_10")]
use std::sync::{Arc, Mutex};
extern crate failure;
use failure::Error;
#[macro_use]
extern crate failure_derive;
#[path = "../examples-common.rs"]
mod examples_common;
#[derive(Debug, Fail)]
#[fail(display = "Missing element {}", _0)]
struct MissingElement(&'static str);
#[derive(Debug, Fail)]
#[fail(
display = "Received error from {}: {} (debug: {:?})",
src, error, debug
)]
struct ErrorMessage {
src: String,
error: String,
debug: Option<String>,
#[cause]
cause: glib::Error,
}
#[cfg(feature = "v1_10")]
#[derive(Clone, Debug)]
struct ErrorValue(Arc<Mutex<Option<Error>>>);
#[cfg(feature = "v1_10")]
impl glib::subclass::boxed::BoxedType for ErrorValue {
const NAME: &'static str = "ErrorValue";
glib_boxed_type!();
}
#[cfg(feature = "v1_10")]
glib_boxed_derive_traits!(ErrorValue);
fn example_main() -> Result<(), Error> {
gst::init()?;
let args: Vec<_> = env::args().collect();
let uri: &str = if args.len() == 2 {
args[1].as_ref()
} else {
println!("Usage: decodebin file_path");
std::process::exit(-1)
};
let pipeline = gst::Pipeline::new(None);
let src = gst::ElementFactory::make("filesrc", None).map_err(|_| MissingElement("filesrc"))?;
let decodebin =
gst::ElementFactory::make("decodebin", None).map_err(|_| MissingElement("decodebin"))?;
// Tell the filesrc what file to load
src.set_property("location", &uri)?;
pipeline.add_many(&[&src, &decodebin])?;
gst::Element::link_many(&[&src, &decodebin])?;
// Need to move a new reference into the closure.
// !!ATTENTION!!:
// It might seem appealing to use pipeline.clone() here, because that greatly
// simplifies the code within the callback. What this actually does, however, is creating
// a memory leak. The clone of a pipeline is a new strong reference on the pipeline.
// Storing this strong reference of the pipeline within the callback (we are moving it in!),
// which is in turn stored in another strong reference on the pipeline is creating a
// reference cycle.
// DO NOT USE pipeline.clone() TO USE THE PIPELINE WITHIN A CALLBACK
let pipeline_weak = pipeline.downgrade();
// Connect to decodebin's pad-added signal, that is emitted whenever
// it found another stream from the input file and found a way to decode it to its raw format.
// decodebin automatically adds a src-pad for this raw stream, which
// we can use to build the follow-up pipeline.
decodebin.connect_pad_added(move |dbin, src_pad| {
// Here we temporarily retrieve a strong reference on the pipeline from the weak one
// we moved into this callback.
let pipeline = match pipeline_weak.upgrade() {
Some(pipeline) => pipeline,
None => return,
};
// Try to detect whether the raw stream decodebin provided us with
// just now is either audio or video (or none of both, e.g. subtitles).
let (is_audio, is_video) = {
let media_type = src_pad.get_current_caps().and_then(|caps| {
caps.get_structure(0).map(|s| {
let name = s.get_name();
(name.starts_with("audio/"), name.starts_with("video/"))
})
});
match media_type {
None => {
gst_element_warning!(
dbin,
gst::CoreError::Negotiation,
("Failed to get media type from pad {}", src_pad.get_name())
);
return;
}
Some(media_type) => media_type,
}
};
// We create a closure here, calling it directly below it, because this greatly
// improves readability for error-handling. Like this, we can simply use the
// ?-operator within the closure, and handle the actual error down below where
// we call the insert_sink(..) closure.
let insert_sink = |is_audio, is_video| -> Result<(), Error> {
if is_audio {
// decodebin found a raw audiostream, so we build the follow-up pipeline to
// play it on the default audio playback device (using autoaudiosink).
let queue = gst::ElementFactory::make("queue", None)
.map_err(|_| MissingElement("queue"))?;
let convert = gst::ElementFactory::make("audioconvert", None)
.map_err(|_| MissingElement("audioconvert"))?;
let resample = gst::ElementFactory::make("audioresample", None)
.map_err(|_| MissingElement("audioresample"))?;
let sink = gst::ElementFactory::make("autoaudiosink", None)
.map_err(|_| MissingElement("autoaudiosink"))?;
let elements = &[&queue, &convert, &resample, &sink];
pipeline.add_many(elements)?;
gst::Element::link_many(elements)?;
// !!ATTENTION!!:
// This is quite important and people forget it often. Without making sure that
// the new elements have the same state as the pipeline, things will fail later.
// They would still be in Null state and can't process data.
for e in elements {
e.sync_state_with_parent()?;
}
// Get the queue element's sink pad and link the decodebin's newly created
// src pad for the audio stream to it.
let sink_pad = queue.get_static_pad("sink").expect("queue has no sinkpad");
src_pad.link(&sink_pad)?;
} else if is_video {
// decodebin found a raw videostream, so we build the follow-up pipeline to
// display it using the autovideosink.
let queue = gst::ElementFactory::make("queue", None)
.map_err(|_| MissingElement("queue"))?;
let convert = gst::ElementFactory::make("videoconvert", None)
.map_err(|_| MissingElement("videoconvert"))?;
let scale = gst::ElementFactory::make("videoscale", None)
.map_err(|_| MissingElement("videoscale"))?;
let sink = gst::ElementFactory::make("autovideosink", None)
.map_err(|_| MissingElement("autovideosink"))?;
let elements = &[&queue, &convert, &scale, &sink];
pipeline.add_many(elements)?;
gst::Element::link_many(elements)?;
for e in elements {
e.sync_state_with_parent()?
}
// Get the queue element's sink pad and link the decodebin's newly created
// src pad for the video stream to it.
let sink_pad = queue.get_static_pad("sink").expect("queue has no sinkpad");
src_pad.link(&sink_pad)?;
}
Ok(())
};
// When adding and linking new elements in a callback fails, error information is often sparse.
// GStreamer's built-in debugging can be hard to link back to the exact position within the code
// that failed. Since callbacks are called from random threads within the pipeline, it can get hard
// to get good error information. The macros used in the following can solve that. With the use
// of those, one can send arbitrary rust types (using the pipeline's bus) into the mainloop.
// What we send here is unpacked down below, in the iteration-code over sent bus-messages.
// Because we are using the failure crate for error details here, we even get a backtrace for
// where the error was constructed. (If RUST_BACKTRACE=1 is set)
if let Err(err) = insert_sink(is_audio, is_video) {
// The following sends a message of type Error on the bus, containing our detailed
// error information.
#[cfg(feature = "v1_10")]
gst_element_error!(
dbin,
gst::LibraryError::Failed,
("Failed to insert sink"),
details: gst::Structure::builder("error-details")
.field("error",
&ErrorValue(Arc::new(Mutex::new(Some(err)))))
.build()
);
#[cfg(not(feature = "v1_10"))]
gst_element_error!(
dbin,
gst::LibraryError::Failed,
("Failed to insert sink"),
["{}", err]
);
}
});
pipeline.set_state(gst::State::Playing)?;
let bus = pipeline
.get_bus()
.expect("Pipeline without bus. Shouldn't happen!");
// This code iterates over all messages that are sent across our pipeline's bus.
// In the callback ("pad-added" on the decodebin), we sent better error information
// using a bus message. This is the position where we get those messages and log
// the contained information.
for msg in bus.iter_timed(gst::CLOCK_TIME_NONE) {
use gst::MessageView;
match msg.view() {
MessageView::Eos(..) => break,
MessageView::Error(err) => {
pipeline.set_state(gst::State::Null)?;
#[cfg(feature = "v1_10")]
{
match err.get_details() {
// This bus-message of type error contained our custom error-details struct
// that we sent in the pad-added callback above. So we unpack it and log
// the detailed error information here. details contains a glib::SendValue.
// The unpacked error is the converted to a Result::Err, stopping the
// application's execution.
Some(details) if details.get_name() == "error-details" => details
.get::<&ErrorValue>("error")
.unwrap()
.and_then(|v| v.0.lock().unwrap().take())
.map(Result::Err)
.expect("error-details message without actual error"),
_ => Err(ErrorMessage {
src: msg
.get_src()
.map(|s| String::from(s.get_path_string()))
.unwrap_or_else(|| String::from("None")),
error: err.get_error().description().into(),
debug: Some(err.get_debug().unwrap().to_string()),
cause: err.get_error(),
}
.into()),
}?;
}
#[cfg(not(feature = "v1_10"))]
{
return Err(ErrorMessage {
src: msg
.get_src()
.map(|s| String::from(s.get_path_string()))
.unwrap_or_else(|| String::from("None")),
error: err.get_error().description().into(),
debug: Some(err.get_debug().unwrap().to_string()),
cause: err.get_error(),
}
.into());
}
}
MessageView::StateChanged(s) => {
println!(
"State changed from {:?}: {:?} -> {:?} ({:?})",
s.get_src().map(|s| s.get_path_string()),
s.get_old(),
s.get_current(),
s.get_pending()
);
}
_ => (),
}
}
pipeline.set_state(gst::State::Null)?;
Ok(())
}
fn main() {
// tutorials_common::run is only required to set up the application environent on macOS
// (but not necessary in normal Cocoa applications where this is set up autmatically)
match examples_common::run(example_main) {
Ok(r) => r,
Err(e) => eprintln!("Error! {}", e),
}
}