gst-plugins-rs/audio/audiofx/src/ebur128level/imp.rs

788 lines
30 KiB
Rust

// Copyright (C) 2021 Sebastian Dröge <sebastian@centricular.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License, v2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at
// <https://mozilla.org/MPL/2.0/>.
//
// SPDX-License-Identifier: MPL-2.0
use gst::glib;
use gst::prelude::*;
use gst::subclass::prelude::*;
use gst_base::prelude::*;
use gst_base::subclass::prelude::*;
use std::i32;
use std::sync::atomic;
use std::sync::Mutex;
use once_cell::sync::Lazy;
use byte_slice_cast::*;
use smallvec::SmallVec;
use atomic_refcell::AtomicRefCell;
static CAT: Lazy<gst::DebugCategory> = Lazy::new(|| {
gst::DebugCategory::new(
"ebur128level",
gst::DebugColorFlags::empty(),
Some("EBU R128 Level"),
)
});
#[glib::flags(name = "GstEbuR128LevelMode")]
pub(crate) enum Mode {
#[flags_value(name = "Calculate momentary loudness (400ms)", nick = "momentary")]
MOMENTARY = 0b00000001,
#[flags_value(name = "Calculate short-term loudness (3s)", nick = "short-term")]
SHORT_TERM = 0b00000010,
#[flags_value(
name = "Calculate relative threshold and global loudness",
nick = "global"
)]
GLOBAL = 0b00000100,
#[flags_value(name = "Calculate loudness range", nick = "loudness-range")]
LOUDNESS_RANGE = 0b00001000,
#[flags_value(name = "Calculate sample peak", nick = "sample-peak")]
SAMPLE_PEAK = 0b00010000,
#[flags_value(name = "Calculate true peak", nick = "true-peak")]
TRUE_PEAK = 0b00100000,
}
impl From<Mode> for ebur128::Mode {
fn from(mode: Mode) -> Self {
// Should use histogram mode as otherwise the history will grow forever
let mut ebur128_mode = ebur128::Mode::HISTOGRAM;
if mode.contains(Mode::MOMENTARY) {
ebur128_mode.set(ebur128::Mode::M, true);
}
if mode.contains(Mode::SHORT_TERM) {
ebur128_mode.set(ebur128::Mode::S, true);
}
if mode.contains(Mode::GLOBAL) {
ebur128_mode.set(ebur128::Mode::I, true);
}
if mode.contains(Mode::LOUDNESS_RANGE) {
ebur128_mode.set(ebur128::Mode::LRA, true);
}
if mode.contains(Mode::SAMPLE_PEAK) {
ebur128_mode.set(ebur128::Mode::SAMPLE_PEAK, true);
}
if mode.contains(Mode::TRUE_PEAK) {
ebur128_mode.set(ebur128::Mode::TRUE_PEAK, true);
}
ebur128_mode
}
}
const DEFAULT_MODE: Mode = Mode::all();
const DEFAULT_POST_MESSAGES: bool = true;
const DEFAULT_INTERVAL: gst::ClockTime = gst::ClockTime::SECOND;
#[derive(Debug, Clone, Copy)]
struct Settings {
mode: Mode,
post_messages: bool,
interval: gst::ClockTime,
}
impl Default for Settings {
fn default() -> Self {
Settings {
mode: DEFAULT_MODE,
post_messages: DEFAULT_POST_MESSAGES,
interval: DEFAULT_INTERVAL,
}
}
}
struct State {
info: gst_audio::AudioInfo,
ebur128: ebur128::EbuR128,
num_frames: u64,
interval_frames: gst::ClockTime,
interval_frames_remaining: gst::ClockTime,
}
#[derive(Default)]
pub struct EbuR128Level {
settings: Mutex<Settings>,
state: AtomicRefCell<Option<State>>,
reset: atomic::AtomicBool,
}
#[glib::object_subclass]
impl ObjectSubclass for EbuR128Level {
const NAME: &'static str = "GstEbuR128Level";
type Type = super::EbuR128Level;
type ParentType = gst_base::BaseTransform;
}
impl ObjectImpl for EbuR128Level {
fn signals() -> &'static [glib::subclass::Signal] {
static SIGNALS: Lazy<Vec<glib::subclass::Signal>> = Lazy::new(|| {
vec![glib::subclass::Signal::builder("reset")
.action()
.class_handler(|_token, args| {
let this = args[0].get::<super::EbuR128Level>().unwrap();
let imp = this.imp();
gst::info!(CAT, obj: this, "Resetting measurements",);
imp.reset.store(true, atomic::Ordering::SeqCst);
None
})
.build()]
});
&SIGNALS
}
fn properties() -> &'static [glib::ParamSpec] {
static PROPERTIES: Lazy<Vec<glib::ParamSpec>> = Lazy::new(|| {
vec![
glib::ParamSpecFlags::builder::<Mode>("mode")
.nick("Mode")
.blurb("Selection of metrics to calculate")
.default_value(DEFAULT_MODE)
.mutable_ready()
.build(),
glib::ParamSpecBoolean::builder("post-messages")
.nick("Post Messages")
.blurb("Whether to post messages on the bus for each interval")
.default_value(DEFAULT_POST_MESSAGES)
.mutable_playing()
.build(),
glib::ParamSpecUInt64::builder("interval")
.nick("Interval")
.blurb("Interval in nanoseconds for posting messages")
.maximum(u64::MAX - 1)
.default_value(DEFAULT_INTERVAL.nseconds())
.mutable_ready()
.build(),
]
});
PROPERTIES.as_ref()
}
fn set_property(&self, _id: usize, value: &glib::Value, pspec: &glib::ParamSpec) {
let mut settings = self.settings.lock().unwrap();
match pspec.name() {
"mode" => {
let mode = value.get().expect("type checked upstream");
gst::info!(
CAT,
imp: self,
"Changing mode from {:?} to {:?}",
settings.mode,
mode
);
settings.mode = mode;
}
"post-messages" => {
let post_messages = value.get().expect("type checked upstream");
gst::info!(
CAT,
imp: self,
"Changing post-messages from {} to {}",
settings.post_messages,
post_messages
);
settings.post_messages = post_messages;
}
"interval" => {
let interval = value.get::<u64>().unwrap().nseconds();
gst::info!(
CAT,
imp: self,
"Changing interval from {} to {}",
settings.interval,
interval,
);
settings.interval = interval;
}
_ => unimplemented!(),
}
}
fn property(&self, _id: usize, pspec: &glib::ParamSpec) -> glib::Value {
let settings = self.settings.lock().unwrap();
match pspec.name() {
"mode" => settings.mode.to_value(),
"post-messages" => settings.post_messages.to_value(),
"interval" => settings.interval.to_value(),
_ => unimplemented!(),
}
}
}
impl GstObjectImpl for EbuR128Level {}
impl ElementImpl for EbuR128Level {
fn metadata() -> Option<&'static gst::subclass::ElementMetadata> {
static ELEMENT_METADATA: Lazy<gst::subclass::ElementMetadata> = Lazy::new(|| {
gst::subclass::ElementMetadata::new(
"EBU R128 Loudness Level Measurement",
"Filter/Analyzer/Audio",
"Measures different loudness metrics according to EBU R128",
"Sebastian Dröge <sebastian@centricular.com>",
)
});
Some(&*ELEMENT_METADATA)
}
fn pad_templates() -> &'static [gst::PadTemplate] {
static PAD_TEMPLATES: Lazy<Vec<gst::PadTemplate>> = Lazy::new(|| {
let caps = gst_audio::AudioCapsBuilder::new()
.format_list([
gst_audio::AUDIO_FORMAT_S16,
gst_audio::AUDIO_FORMAT_S32,
gst_audio::AUDIO_FORMAT_F32,
gst_audio::AUDIO_FORMAT_F64,
])
// Limit from ebur128
.rate_range(1..2_822_400)
// Limit from ebur128
.channels_range(1..64)
.layout_list([
gst_audio::AudioLayout::Interleaved,
gst_audio::AudioLayout::NonInterleaved,
])
.build();
let src_pad_template = gst::PadTemplate::new(
"src",
gst::PadDirection::Src,
gst::PadPresence::Always,
&caps,
)
.unwrap();
let sink_pad_template = gst::PadTemplate::new(
"sink",
gst::PadDirection::Sink,
gst::PadPresence::Always,
&caps,
)
.unwrap();
vec![src_pad_template, sink_pad_template]
});
PAD_TEMPLATES.as_ref()
}
}
impl BaseTransformImpl for EbuR128Level {
const MODE: gst_base::subclass::BaseTransformMode =
gst_base::subclass::BaseTransformMode::AlwaysInPlace;
const PASSTHROUGH_ON_SAME_CAPS: bool = true;
const TRANSFORM_IP_ON_PASSTHROUGH: bool = true;
fn set_caps(&self, incaps: &gst::Caps, _outcaps: &gst::Caps) -> Result<(), gst::LoggableError> {
let info = match gst_audio::AudioInfo::from_caps(incaps) {
Err(_) => return Err(gst::loggable_error!(CAT, "Failed to parse input caps")),
Ok(info) => info,
};
gst::debug!(CAT, imp: self, "Configured for caps {}", incaps,);
let settings = *self.settings.lock().unwrap();
let mut ebur128 = ebur128::EbuR128::new(info.channels(), info.rate(), settings.mode.into())
.map_err(|err| gst::loggable_error!(CAT, "Failed to create EBU R128: {}", err))?;
// Map channel positions if we can to give correct weighting
if let Some(positions) = info.positions() {
let channel_map = positions
.iter()
.map(|p| {
match p {
gst_audio::AudioChannelPosition::Mono => ebur128::Channel::DualMono,
gst_audio::AudioChannelPosition::FrontLeft => ebur128::Channel::Left,
gst_audio::AudioChannelPosition::FrontRight => ebur128::Channel::Right,
gst_audio::AudioChannelPosition::FrontCenter => ebur128::Channel::Center,
gst_audio::AudioChannelPosition::Lfe1
| gst_audio::AudioChannelPosition::Lfe2 => ebur128::Channel::Unused,
gst_audio::AudioChannelPosition::RearLeft => ebur128::Channel::Mp135,
gst_audio::AudioChannelPosition::RearRight => ebur128::Channel::Mm135,
gst_audio::AudioChannelPosition::FrontLeftOfCenter => {
ebur128::Channel::MpSC
}
gst_audio::AudioChannelPosition::FrontRightOfCenter => {
ebur128::Channel::MmSC
}
gst_audio::AudioChannelPosition::RearCenter => ebur128::Channel::Mp180,
gst_audio::AudioChannelPosition::SideLeft => ebur128::Channel::Mp090,
gst_audio::AudioChannelPosition::SideRight => ebur128::Channel::Mm090,
gst_audio::AudioChannelPosition::TopFrontLeft => ebur128::Channel::Up030,
gst_audio::AudioChannelPosition::TopFrontRight => ebur128::Channel::Um030,
gst_audio::AudioChannelPosition::TopFrontCenter => ebur128::Channel::Up000,
gst_audio::AudioChannelPosition::TopCenter => ebur128::Channel::Tp000,
gst_audio::AudioChannelPosition::TopRearLeft => ebur128::Channel::Up135,
gst_audio::AudioChannelPosition::TopRearRight => ebur128::Channel::Um135,
gst_audio::AudioChannelPosition::TopSideLeft => ebur128::Channel::Up090,
gst_audio::AudioChannelPosition::TopSideRight => ebur128::Channel::Um090,
gst_audio::AudioChannelPosition::TopRearCenter => ebur128::Channel::Up180,
gst_audio::AudioChannelPosition::BottomFrontCenter => {
ebur128::Channel::Bp000
}
gst_audio::AudioChannelPosition::BottomFrontLeft => ebur128::Channel::Bp045,
gst_audio::AudioChannelPosition::BottomFrontRight => {
ebur128::Channel::Bm045
}
gst_audio::AudioChannelPosition::WideLeft => {
ebur128::Channel::Mp135 // Mp110?
}
gst_audio::AudioChannelPosition::WideRight => {
ebur128::Channel::Mm135 // Mm110?
}
gst_audio::AudioChannelPosition::SurroundLeft => {
ebur128::Channel::Mp135 // Mp110?
}
gst_audio::AudioChannelPosition::SurroundRight => {
ebur128::Channel::Mm135 // Mm110?
}
gst_audio::AudioChannelPosition::Invalid
| gst_audio::AudioChannelPosition::None => ebur128::Channel::Unused,
val => {
gst::debug!(
CAT,
imp: self,
"Unknown channel position {:?}, ignoring channel",
val
);
ebur128::Channel::Unused
}
}
})
.collect::<Vec<_>>();
ebur128
.set_channel_map(&channel_map)
.map_err(|err| gst::loggable_error!(CAT, "Failed to set channel map: {}", err))?;
} else {
// Weight all channels equally if we have no channel map
let channel_map = std::iter::repeat(ebur128::Channel::Center)
.take(info.channels() as usize)
.collect::<Vec<_>>();
ebur128
.set_channel_map(&channel_map)
.map_err(|err| gst::loggable_error!(CAT, "Failed to set channel map: {}", err))?;
}
let interval_frames = settings
.interval
.mul_div_floor(info.rate() as u64, *gst::ClockTime::SECOND)
.unwrap();
*self.state.borrow_mut() = Some(State {
info,
ebur128,
num_frames: 0,
interval_frames,
interval_frames_remaining: interval_frames,
});
Ok(())
}
fn stop(&self) -> Result<(), gst::ErrorMessage> {
// Drop state
let _ = self.state.borrow_mut().take();
gst::info!(CAT, imp: self, "Stopped");
Ok(())
}
fn transform_ip_passthrough(
&self,
buf: &gst::Buffer,
) -> Result<gst::FlowSuccess, gst::FlowError> {
let settings = *self.settings.lock().unwrap();
let mut state_guard = self.state.borrow_mut();
let mut state = state_guard.as_mut().ok_or_else(|| {
gst::element_imp_error!(self, gst::CoreError::Negotiation, ["Have no state yet"]);
gst::FlowError::NotNegotiated
})?;
let mut timestamp = buf.pts();
let segment = self.obj().segment().downcast::<gst::ClockTime>().ok();
let buf = gst_audio::AudioBufferRef::from_buffer_ref_readable(buf, &state.info).map_err(
|_| {
gst::element_imp_error!(self, gst::ResourceError::Read, ["Failed to map buffer"]);
gst::FlowError::Error
},
)?;
let mut frames = Frames::from_audio_buffer(self, &buf)?;
while frames.num_frames() > 0 {
if self
.reset
.compare_exchange(
true,
false,
atomic::Ordering::SeqCst,
atomic::Ordering::SeqCst,
)
.is_ok()
{
state.ebur128.reset();
state.interval_frames_remaining = state.interval_frames;
state.num_frames = 0;
}
let to_process = u64::min(
state.interval_frames_remaining.nseconds(),
frames.num_frames() as u64,
);
frames
.process(to_process, &mut state.ebur128)
.map_err(|err| {
gst::element_imp_error!(
self,
gst::ResourceError::Read,
["Failed to process buffer: {}", err]
);
gst::FlowError::Error
})?;
state.interval_frames_remaining -= to_process.nseconds();
state.num_frames += to_process;
// The timestamp we report in messages is always the timestamp until which measurements
// are included, not the starting timestamp.
timestamp = timestamp.opt_add(
to_process
.mul_div_floor(*gst::ClockTime::SECOND, state.info.rate() as u64)
.map(gst::ClockTime::from_nseconds)
.unwrap(),
);
// Post a message whenever an interval is full
if state.interval_frames_remaining.is_zero() {
state.interval_frames_remaining = state.interval_frames;
if settings.post_messages {
let running_time = segment.as_ref().and_then(|s| s.to_running_time(timestamp));
let stream_time = segment.as_ref().and_then(|s| s.to_stream_time(timestamp));
let mut s = gst::Structure::builder("ebur128-level")
.field("timestamp", timestamp)
.field("running-time", running_time)
.field("stream-time", stream_time)
.build();
if state.ebur128.mode().contains(ebur128::Mode::M) {
match state.ebur128.loudness_momentary() {
Ok(loudness) => s.set("momentary-loudness", loudness),
Err(err) => gst::error!(
CAT,
imp: self,
"Failed to get momentary loudness: {}",
err
),
}
}
if state.ebur128.mode().contains(ebur128::Mode::S) {
match state.ebur128.loudness_shortterm() {
Ok(loudness) => s.set("shortterm-loudness", loudness),
Err(err) => gst::error!(
CAT,
imp: self,
"Failed to get shortterm loudness: {}",
err
),
}
}
if state.ebur128.mode().contains(ebur128::Mode::I) {
match state.ebur128.loudness_global() {
Ok(loudness) => s.set("global-loudness", loudness),
Err(err) => gst::error!(
CAT,
imp: self,
"Failed to get global loudness: {}",
err
),
}
match state.ebur128.relative_threshold() {
Ok(threshold) => s.set("relative-threshold", threshold),
Err(err) => gst::error!(
CAT,
imp: self,
"Failed to get relative threshold: {}",
err
),
}
}
if state.ebur128.mode().contains(ebur128::Mode::LRA) {
match state.ebur128.loudness_range() {
Ok(range) => s.set("loudness-range", range),
Err(err) => {
gst::error!(CAT, imp: self, "Failed to get loudness range: {}", err)
}
}
}
if state.ebur128.mode().contains(ebur128::Mode::SAMPLE_PEAK) {
let peaks = (0..state.info.channels())
.map(|c| state.ebur128.sample_peak(c).map(|p| p.to_send_value()))
.collect::<Result<gst::Array, _>>();
match peaks {
Ok(peaks) => s.set("sample-peak", peaks),
Err(err) => {
gst::error!(CAT, imp: self, "Failed to get sample peaks: {}", err)
}
}
}
if state.ebur128.mode().contains(ebur128::Mode::TRUE_PEAK) {
let peaks = (0..state.info.channels())
.map(|c| state.ebur128.true_peak(c).map(|p| p.to_send_value()))
.collect::<Result<gst::Array, _>>();
match peaks {
Ok(peaks) => s.set("true-peak", peaks),
Err(err) => {
gst::error!(CAT, imp: self, "Failed to get true peaks: {}", err)
}
}
}
gst::debug!(CAT, imp: self, "Posting message {}", s);
let msg = gst::message::Element::builder(s).src(&*self.obj()).build();
// Release lock while posting the message to avoid deadlocks
drop(state_guard);
let _ = self.obj().post_message(msg);
state_guard = self.state.borrow_mut();
state = state_guard.as_mut().ok_or_else(|| {
gst::element_imp_error!(
self,
gst::CoreError::Negotiation,
["Have no state yet"]
);
gst::FlowError::NotNegotiated
})?;
}
}
}
Ok(gst::FlowSuccess::Ok)
}
}
/// Helper struct to handle the different sample formats and layouts generically.
enum Frames<'a> {
S16(&'a [i16], usize),
S32(&'a [i32], usize),
F32(&'a [f32], usize),
F64(&'a [f64], usize),
S16P(SmallVec<[&'a [i16]; 64]>),
S32P(SmallVec<[&'a [i32]; 64]>),
F32P(SmallVec<[&'a [f32]; 64]>),
F64P(SmallVec<[&'a [f64]; 64]>),
}
impl<'a> Frames<'a> {
/// Create a new frames wrapper that allows chunked processing.
fn from_audio_buffer(
imp: &EbuR128Level,
buf: &'a gst_audio::AudioBufferRef<&'a gst::BufferRef>,
) -> Result<Self, gst::FlowError> {
match (buf.format(), buf.layout()) {
(gst_audio::AUDIO_FORMAT_S16, gst_audio::AudioLayout::Interleaved) => Ok(Frames::S16(
interleaved_channel_data_into_slice(imp, buf)?,
buf.channels() as usize,
)),
(gst_audio::AUDIO_FORMAT_S32, gst_audio::AudioLayout::Interleaved) => Ok(Frames::S32(
interleaved_channel_data_into_slice(imp, buf)?,
buf.channels() as usize,
)),
(gst_audio::AUDIO_FORMAT_F32, gst_audio::AudioLayout::Interleaved) => Ok(Frames::F32(
interleaved_channel_data_into_slice(imp, buf)?,
buf.channels() as usize,
)),
(gst_audio::AUDIO_FORMAT_F64, gst_audio::AudioLayout::Interleaved) => Ok(Frames::F64(
interleaved_channel_data_into_slice(imp, buf)?,
buf.channels() as usize,
)),
(gst_audio::AUDIO_FORMAT_S16, gst_audio::AudioLayout::NonInterleaved) => Ok(
Frames::S16P(non_interleaved_channel_data_into_slices(imp, buf)?),
),
(gst_audio::AUDIO_FORMAT_S32, gst_audio::AudioLayout::NonInterleaved) => Ok(
Frames::S32P(non_interleaved_channel_data_into_slices(imp, buf)?),
),
(gst_audio::AUDIO_FORMAT_F32, gst_audio::AudioLayout::NonInterleaved) => Ok(
Frames::F32P(non_interleaved_channel_data_into_slices(imp, buf)?),
),
(gst_audio::AUDIO_FORMAT_F64, gst_audio::AudioLayout::NonInterleaved) => Ok(
Frames::F64P(non_interleaved_channel_data_into_slices(imp, buf)?),
),
_ => Err(gst::FlowError::NotNegotiated),
}
}
/// Get the number of remaining frames.
fn num_frames(&self) -> usize {
match self {
Frames::S16(frames, channels) => frames.len() / channels,
Frames::S32(frames, channels) => frames.len() / channels,
Frames::F32(frames, channels) => frames.len() / channels,
Frames::F64(frames, channels) => frames.len() / channels,
Frames::S16P(frames) => frames[0].len(),
Frames::S32P(frames) => frames[0].len(),
Frames::F32P(frames) => frames[0].len(),
Frames::F64P(frames) => frames[0].len(),
}
}
/// Process `num_frames` with `ebur128` and advance to the next frames.
fn process(
&mut self,
num_frames: u64,
ebur128: &mut ebur128::EbuR128,
) -> Result<(), ebur128::Error> {
match self {
Frames::S16(frames, channels) => {
let (first, second) = frames.split_at(num_frames as usize * *channels);
ebur128.add_frames_i16(first)?;
*frames = second;
Ok(())
}
Frames::S32(frames, channels) => {
let (first, second) = frames.split_at(num_frames as usize * *channels);
ebur128.add_frames_i32(first)?;
*frames = second;
Ok(())
}
Frames::F32(frames, channels) => {
let (first, second) = frames.split_at(num_frames as usize * *channels);
ebur128.add_frames_f32(first)?;
*frames = second;
Ok(())
}
Frames::F64(frames, channels) => {
let (first, second) = frames.split_at(num_frames as usize * *channels);
ebur128.add_frames_f64(first)?;
*frames = second;
Ok(())
}
Frames::S16P(channels) => {
let (first, second) = split_vec(channels, num_frames as usize);
ebur128.add_frames_planar_i16(&first)?;
*channels = second;
Ok(())
}
Frames::S32P(channels) => {
let (first, second) = split_vec(channels, num_frames as usize);
ebur128.add_frames_planar_i32(&first)?;
*channels = second;
Ok(())
}
Frames::F32P(channels) => {
let (first, second) = split_vec(channels, num_frames as usize);
ebur128.add_frames_planar_f32(&first)?;
*channels = second;
Ok(())
}
Frames::F64P(channels) => {
let (first, second) = split_vec(channels, num_frames as usize);
ebur128.add_frames_planar_f64(&first)?;
*channels = second;
Ok(())
}
}
}
}
/// Converts an interleaved audio buffer into a typed slice.
fn interleaved_channel_data_into_slice<'a, T: FromByteSlice>(
imp: &EbuR128Level,
buf: &'a gst_audio::AudioBufferRef<&gst::BufferRef>,
) -> Result<&'a [T], gst::FlowError> {
buf.plane_data(0)
.map_err(|err| {
gst::error!(CAT, imp: imp, "Failed to get audio data: {}", err);
gst::FlowError::Error
})?
.as_slice_of::<T>()
.map_err(|err| {
gst::error!(CAT, imp: imp, "Failed to handle audio data: {}", err);
gst::FlowError::Error
})
}
/// Converts a non-interleaved audio buffer into a vector of typed slices.
fn non_interleaved_channel_data_into_slices<'a, T: FromByteSlice>(
imp: &EbuR128Level,
buf: &'a gst_audio::AudioBufferRef<&gst::BufferRef>,
) -> Result<SmallVec<[&'a [T]; 64]>, gst::FlowError> {
(0..buf.channels())
.map(|c| {
buf.plane_data(c)
.map_err(|err| {
gst::error!(CAT, imp: imp, "Failed to get audio data: {}", err);
gst::FlowError::Error
})?
.as_slice_of::<T>()
.map_err(|err| {
gst::error!(CAT, imp: imp, "Failed to handle audio data: {}", err);
gst::FlowError::Error
})
})
.collect::<Result<_, _>>()
}
/// Split a vector of slices into a tuple of slices with each slice split at `split_at`.
#[allow(clippy::type_complexity)]
fn split_vec<'a, 'b, T: Copy>(
vec: &'b SmallVec<[&'a [T]; 64]>,
split_at: usize,
) -> (SmallVec<[&'a [T]; 64]>, SmallVec<[&'a [T]; 64]>) {
let VecPair(first, second) = vec
.iter()
.map(|vec| vec.split_at(split_at))
.collect::<VecPair<_>>();
(first, second)
}
/// Helper struct to collect from an iterator on pairs into two vectors.
struct VecPair<T>(SmallVec<[T; 64]>, SmallVec<[T; 64]>);
impl<T> std::iter::FromIterator<(T, T)> for VecPair<T> {
fn from_iter<I: IntoIterator<Item = (T, T)>>(iter: I) -> Self {
let mut first_vec = SmallVec::new();
let mut second_vec = SmallVec::new();
for (first, second) in iter {
first_vec.push(first);
second_vec.push(second);
}
VecPair(first_vec, second_vec)
}
}