gst-plugins-rs/audio/audiofx/src/audioloudnorm/imp.rs
Sebastian Dröge b1bd3020fa audioloudnorm: Clamp to the expected limits instead of asserting
The calculations on the floating point numbers can't get out of the
expected range by construction expect for rounding errors at the limits.
Rounding errors at the limits shouldn't lead to assertions, so instead
clamp to the limits.
2021-09-28 13:53:21 +03:00

1957 lines
72 KiB
Rust

// Copyright (C) 2019-2020 Sebastian Dröge <sebastian@centricular.com>
//
// Audio processing part of this file ported from ffmpeg/libavfilter/af_loudnorm.c
//
// Copyright (c) 2016 Kyle Swanson <k@ylo.ph>
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// FFmpeg is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with FFmpeg; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
use gst::glib;
use gst::prelude::*;
use gst::subclass::prelude::*;
use gst::{gst_debug, gst_error, gst_info, gst_log};
use std::mem;
use std::sync::Mutex;
use std::{i32, u64};
use byte_slice_cast::*;
use once_cell::sync::Lazy;
use atomic_refcell::AtomicRefCell;
static CAT: Lazy<gst::DebugCategory> = Lazy::new(|| {
gst::DebugCategory::new(
"rsaudioloudnorm",
gst::DebugColorFlags::empty(),
Some("Rust Audio Loudless Normalization Filter"),
)
});
const DEFAULT_LOUDNESS_TARGET: f64 = -24.0;
const DEFAULT_LOUDNESS_RANGE_TARGET: f64 = 7.0;
const DEFAULT_MAX_TRUE_PEAK: f64 = -2.0;
const DEFAULT_OFFSET: f64 = 0.0;
#[derive(Debug, Clone, Copy)]
struct Settings {
pub loudness_target: f64,
pub loudness_range_target: f64,
pub max_true_peak: f64,
pub offset: f64,
}
impl Default for Settings {
fn default() -> Self {
Settings {
loudness_target: DEFAULT_LOUDNESS_TARGET,
loudness_range_target: DEFAULT_LOUDNESS_RANGE_TARGET,
max_true_peak: DEFAULT_MAX_TRUE_PEAK,
offset: DEFAULT_OFFSET,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum FrameType {
First,
Inner,
Final,
Linear,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum LimiterState {
Out,
Attack,
Sustain,
Release,
}
struct State {
info: gst_audio::AudioInfo,
adapter: gst_base::UniqueAdapter,
// Current amount of sample we consume per iteration: for the first frame 3s, afterwards 100ms
current_samples_per_frame: usize,
// Settings during setup
offset: f64,
target_i: f64,
target_lra: f64,
target_tp: f64,
// Input ringbuffer for loudness analysis
// TODO: Convert to a proper ringbuffer
buf: Box<[f64]>,
// read index
buf_index: usize,
// write index (always 210ms from buf_index)
prev_buf_index: usize,
// Gaussian filter for gains
// TODO: These are actually constant. Once `for` is allowed
// in `const fn` we can make them proper constants.
weights: [f64; 21],
// TODO: Convert to a proper ringbuffer
delta: [f64; 30],
index: usize,
prev_delta: f64,
// Limiter
gain_reduction: [f64; 2],
// TODO: Convert to a proper ringbuffer
limiter_buf: Box<[f64]>,
// Read/write index, depending on context
limiter_buf_index: usize,
// Previous sample (potentially of the previous frame) used for detecting peaks in the limiter
prev_smp: Box<[f64]>,
limiter_state: LimiterState,
// During attack/release state, the position in the corresponding window
env_cnt: usize,
// Number of samples to sustain at the beginning of the sustain state, if any
sustain_cnt: Option<usize>,
frame_type: FrameType,
above_threshold: bool,
// Input loudness calculation
r128_in: ebur128::EbuR128,
// Actual output loudness calculation
r128_out: ebur128::EbuR128,
}
impl State {
fn new(settings: &Settings, info: gst_audio::AudioInfo) -> Self {
let r128_in = ebur128::EbuR128::new(
info.channels(),
info.rate(),
ebur128::Mode::HISTOGRAM
| ebur128::Mode::I
| ebur128::Mode::S
| ebur128::Mode::LRA
| ebur128::Mode::SAMPLE_PEAK,
)
.unwrap();
let r128_out = ebur128::EbuR128::new(
info.channels(),
info.rate(),
ebur128::Mode::HISTOGRAM
| ebur128::Mode::I
| ebur128::Mode::S
| ebur128::Mode::LRA
| ebur128::Mode::SAMPLE_PEAK,
)
.unwrap();
let buf_size = GAIN_LOOKAHEAD * info.channels() as usize;
let buf = vec![0.0; buf_size].into_boxed_slice();
let limiter_buf_size = (2 * FRAME_SIZE + LIMITER_LOOKAHEAD) * info.channels() as usize;
let limiter_buf = vec![0.0; limiter_buf_size].into_boxed_slice();
let prev_smp = vec![0.0; info.channels() as usize].into_boxed_slice();
let current_samples_per_frame = GAIN_LOOKAHEAD;
let buf_index = 0;
let prev_buf_index = 0;
let limiter_buf_index = 0;
let index = 1;
let limiter_state = LimiterState::Out;
let offset = f64::powf(10., settings.offset / 20.);
let target_tp = f64::powf(10., settings.max_true_peak / 20.);
State {
info,
adapter: gst_base::UniqueAdapter::new(),
current_samples_per_frame,
offset,
target_i: settings.loudness_target,
target_lra: settings.loudness_range_target,
target_tp,
buf,
buf_index,
prev_buf_index,
delta: [0.0; 30],
weights: init_gaussian_filter(),
prev_delta: 0.0,
index,
gain_reduction: [0.0; 2],
limiter_buf,
prev_smp,
limiter_buf_index,
limiter_state,
env_cnt: 0,
sustain_cnt: None,
frame_type: FrameType::First,
above_threshold: false,
r128_in,
r128_out,
}
}
}
pub struct AudioLoudNorm {
srcpad: gst::Pad,
sinkpad: gst::Pad,
settings: Mutex<Settings>,
state: AtomicRefCell<Option<State>>,
}
// Gain analysis parameters
const GAIN_LOOKAHEAD: usize = 3 * 192_000; // 3s
const FRAME_SIZE: usize = 19_200; // 100ms
// Limiter parameters
const LIMITER_ATTACK_WINDOW: usize = 1920; // 10ms
const LIMITER_RELEASE_WINDOW: usize = 19_200; // 100ms
const LIMITER_LOOKAHEAD: usize = 1920; // 10ms
impl State {
// Drains all full frames that are currently in the adapter
fn drain_full_frames(
&mut self,
element: &super::AudioLoudNorm,
) -> Result<Vec<gst::Buffer>, gst::FlowError> {
let mut outbufs = vec![];
while self.adapter.available() >= self.info.bpf() as usize * self.current_samples_per_frame
{
let (pts, distance) = self.adapter.prev_pts();
let distance_samples = distance / self.info.bpf() as u64;
let distance_ts = distance_samples
.mul_div_floor(*gst::ClockTime::SECOND, self.info.rate() as u64)
.map(gst::ClockTime::from_nseconds);
let pts = pts.zip(distance_ts).map(|(pts, dist)| pts + dist);
let inbuf = self
.adapter
.take_buffer(self.info.bpf() as usize * self.current_samples_per_frame)
.unwrap();
let src = inbuf.map_readable().map_err(|_| gst::FlowError::Error)?;
let src = src
.as_slice_of::<f64>()
.map_err(|_| gst::FlowError::Error)?;
let (mut outbuf, pts) = self.process(element, src, pts)?;
{
let outbuf = outbuf.get_mut().unwrap();
outbuf.set_pts(pts);
outbuf.set_duration(
(outbuf.size() as u64)
.mul_div_floor(
*gst::ClockTime::SECOND,
(self.info.bpf() * self.info.rate()) as u64,
)
.map(gst::ClockTime::from_nseconds),
);
}
outbufs.push(outbuf);
}
Ok(outbufs)
}
// Drains everything
fn drain(&mut self, element: &super::AudioLoudNorm) -> Result<gst::Buffer, gst::FlowError> {
gst_debug!(CAT, obj: element, "Draining");
let (pts, distance) = self.adapter.prev_pts();
let distance_samples = distance / self.info.bpf() as u64;
let distance_ts = distance_samples
.mul_div_floor(*gst::ClockTime::SECOND, self.info.rate() as u64)
.map(gst::ClockTime::from_nseconds);
let pts = pts.zip(distance_ts).map(|(pts, dist)| pts + dist);
let mut _mapped_inbuf = None;
let src = if self.adapter.available() > 0 {
let inbuf = self.adapter.take_buffer(self.adapter.available()).unwrap();
let inbuf = inbuf
.into_mapped_buffer_readable()
.map_err(|_| gst::FlowError::Error)?;
_mapped_inbuf = Some(inbuf);
_mapped_inbuf
.as_ref()
.unwrap()
.as_slice_of::<f64>()
.map_err(|_| gst::FlowError::Error)?
} else {
&[]
};
// If we already output something before then we go into final frame processing, otherwise
// we drain any data we still have by doing linear processing.
if self.current_samples_per_frame == FRAME_SIZE {
self.frame_type = FrameType::Final;
} else if src.is_empty() {
// Nothing to drain at all
gst_debug!(CAT, obj: element, "No data to drain");
return Err(gst::FlowError::Eos);
}
let (mut outbuf, pts) = self.process(element, src, pts)?;
{
let outbuf = outbuf.get_mut().unwrap();
outbuf.set_pts(pts);
outbuf.set_duration(
(outbuf.size() as u64)
.mul_div_floor(
*gst::ClockTime::SECOND,
(self.info.bpf() * self.info.rate()) as u64,
)
.map(gst::ClockTime::from_nseconds),
);
}
Ok(outbuf)
}
fn process_first_frame_is_last(
&mut self,
element: &super::AudioLoudNorm,
) -> Result<(), gst::FlowError> {
// Calculated loudness in LUFS
let global = self
.r128_in
.loudness_global()
.map_err(|_| gst::FlowError::Error)?;
// Peak sample value for all changes
let mut true_peak = 0.0;
for c in 0..(self.info.channels()) {
let peak = self
.r128_in
.sample_peak(c)
.map_err(|_| gst::FlowError::Error)?;
if c == 0 || peak > true_peak {
true_peak = peak;
}
}
gst_debug!(
CAT,
obj: element,
"Calculated global loudness for first frame {} with peak {}",
global,
true_peak
);
// Difference between targetted and calculated LUFS loudness as a linear scalefactor.
let offset = f64::powf(10., (self.target_i - global) / 20.);
// What the new peak would be after adjusting for the targetted loudness.
let offset_tp = true_peak * offset;
// If the new peak would be more quiet than targeted one, take it. Otherwise only go as
// high as the true peak allows.
self.offset = if offset_tp < self.target_tp {
offset
} else {
self.target_tp / true_peak
};
self.frame_type = FrameType::Linear;
Ok(())
}
fn process_first_frame(
&mut self,
element: &super::AudioLoudNorm,
src: &[f64],
pts: impl Into<Option<gst::ClockTime>>,
) -> Result<(gst::Buffer, Option<gst::ClockTime>), gst::FlowError> {
// Fill our whole buffer here with the initial input, i.e. 3000ms of samples.
self.buf.copy_from_slice(src);
// Calculate the shortterm loudness in LUFS.
let shortterm = self
.r128_in
.loudness_shortterm()
.map_err(|_| gst::FlowError::Error)?;
let env_shortterm = if shortterm < -70.0 {
self.above_threshold = false;
0.
} else {
self.above_threshold = true;
self.target_i - shortterm
};
// Initialize with linear scale factor for reaching the target loudness.
for delta in self.delta.iter_mut() {
*delta = f64::powf(10.0, env_shortterm / 20.);
}
self.prev_delta = self.delta[self.index];
gst_debug!(
CAT,
obj: element,
"Initializing for first frame with gain adjustment of {}",
self.prev_delta
);
// Fill the whole limiter_buf with the gain corrected first part of the buffered
// input, i.e. 210ms. 100ms for the current frame plus 100ms lookahead for the
// limiter with the next frame plus 10ms in addition because the limiter would
// look a few samples further when detecting a peak to make sure no higher values
// are following.
for (limiter_buf, sample) in self.limiter_buf.iter_mut().zip(self.buf.iter()) {
*limiter_buf = sample * self.prev_delta * self.offset;
}
// Read position of the buffer is now advanced.
self.buf_index = self.limiter_buf.len();
// Write position of the limiter_buf is at the beginning still. We consume
// the first 100ms of it below directly so that the next iteration will
// overwrite these 100ms directly.
self.limiter_buf_index = 0;
let mut outbuf = gst::Buffer::with_size(FRAME_SIZE * self.info.bpf() as usize)
.map_err(|_| gst::FlowError::Error)?;
{
let outbuf = outbuf.get_mut().unwrap();
let mut dst = outbuf.map_writable().map_err(|_| gst::FlowError::Error)?;
let dst = dst
.as_mut_slice_of::<f64>()
.map_err(|_| gst::FlowError::Error)?;
// This now consumes the first 100ms of limiter_buf for the output.
self.true_peak_limiter(element, dst);
self.r128_out
.add_frames_f64(dst)
.map_err(|_| gst::FlowError::Error)?;
}
// From now on we consume 100ms input frames and output 100ms.
self.current_samples_per_frame = FRAME_SIZE;
self.frame_type = FrameType::Inner;
// PTS is the input PTS for the first frame, we output the first 100ms of the input
// buffer here
Ok((outbuf, pts.into()))
}
fn process_fill_inner_frame(&mut self, element: &super::AudioLoudNorm, src: &[f64]) {
// Get gain for this and the next 100ms frame based the delta array
// and smoothened with a gaussian filter.
let gain = self.gaussian_filter(if self.index + 10 < 30 {
self.index + 10
} else {
self.index + 10 - 30
});
let gain_next = self.gaussian_filter(if self.index + 11 < 30 {
self.index + 11
} else {
self.index + 11 - 30
});
gst_debug!(
CAT,
obj: element,
"Applying gain adjustment {}-{}",
gain,
gain_next
);
// Overwrite the first 100ms of the limiter_buf with the gain corrected 100ms of
// buf. This is correct because either above (for the first frame) or in the
// previous iteration here we already have output these 100ms.
//
// Also fill 100ms of buf with the 100ms of new input at the same time.
let channels = self.info.channels() as usize;
assert!(src.len() / channels <= FRAME_SIZE);
for (n, samples) in src.chunks_exact(channels).enumerate() {
// Safety: Index ranges are checked below and both slices from buf are
// guaranteed to be non-overlapping (210ms limiter_buf difference).
let (buf_read, buf_write, limiter_buf) = unsafe {
let buf = &mut &mut *self.buf as *mut &mut [f64];
let buf_read = (*buf).get_unchecked(self.buf_index..(self.buf_index + channels));
let buf_write =
(*buf).get_unchecked_mut(self.prev_buf_index..(self.prev_buf_index + channels));
let limiter_buf = self
.limiter_buf
.get_unchecked_mut(self.limiter_buf_index..(self.limiter_buf_index + channels));
(buf_read, buf_write, limiter_buf)
};
buf_write.copy_from_slice(samples);
// Linearly interpolate between the current and next gain for each sample.
let current_gain =
(gain + ((n as f64 / FRAME_SIZE as f64) * (gain_next - gain))) * self.offset;
for (o, i) in limiter_buf.iter_mut().zip(buf_read.iter()) {
*o = *i * current_gain;
}
self.limiter_buf_index += channels;
if self.limiter_buf_index >= self.limiter_buf.len() {
self.limiter_buf_index -= self.limiter_buf.len();
}
self.prev_buf_index += channels;
if self.prev_buf_index >= self.buf.len() {
self.prev_buf_index -= self.buf.len();
}
self.buf_index += channels;
if self.buf_index >= self.buf.len() {
self.buf_index -= self.buf.len();
}
}
}
fn process_update_gain_inner_frame(
&mut self,
element: &super::AudioLoudNorm,
) -> Result<(), gst::FlowError> {
// Calculate global, shortterm loudness and relative threshold in LUFS.
let global = self
.r128_in
.loudness_global()
.map_err(|_| gst::FlowError::Error)?;
let shortterm = self
.r128_in
.loudness_shortterm()
.map_err(|_| gst::FlowError::Error)?;
let relative_threshold = self
.r128_in
.relative_threshold()
.map_err(|_| gst::FlowError::Error)?;
gst_debug!(
CAT,
obj: element,
"Calculated global loudness {}, short term loudness {} and relative threshold {}",
global,
shortterm,
relative_threshold
);
// If we were previously not above the threshold but are now above in the
// shortterm, slightly increase the scale factor. If the shortterm output was above
// the target then also consider this frame above threshold.
if !self.above_threshold {
if shortterm > -70.0 {
self.prev_delta *= 1.0058;
}
let shortterm_out = self
.r128_out
.loudness_shortterm()
.map_err(|_| gst::FlowError::Error)?;
if shortterm_out >= self.target_i {
self.above_threshold = true;
gst_debug!(
CAT,
obj: element,
"Above threshold now ({} >= {}, {} > -70)",
shortterm_out,
self.target_i,
shortterm
);
}
}
// If we're still below the threshold, continue using the previous delta. Otherwise
// calculate a new one.
if shortterm < relative_threshold || shortterm <= -70. || !self.above_threshold {
self.delta[self.index] = self.prev_delta;
} else {
let env_global = if (shortterm - global).abs() < (self.target_lra / 2.) {
shortterm - global
} else if (self.target_lra / 2.) * (shortterm - global) < 0.0 {
-1.
} else {
1.
};
let env_shortterm = self.target_i - shortterm;
self.delta[self.index] = f64::powf(10., (env_global + env_shortterm) / 20.);
}
self.prev_delta = self.delta[self.index];
gst_debug!(
CAT,
obj: element,
"Calculated new gain adjustment {}",
self.prev_delta
);
self.index += 1;
if self.index >= 30 {
self.index -= 30;
}
Ok(())
}
fn process_inner_frame(
&mut self,
element: &super::AudioLoudNorm,
src: &[f64],
pts: impl Into<Option<gst::ClockTime>>,
) -> Result<(gst::Buffer, Option<gst::ClockTime>), gst::FlowError> {
// Fill in these 100ms and adjust its gain according to previous measurements, and
// at the same time copy 100ms over to the limiter_buf.
self.process_fill_inner_frame(element, src);
// limiter_buf_index was 100ms advanced above, which brings us to exactly the
// position where we have to start consuming 100ms for the output now, and exactly
// the position where we have to start writing the next 100ms in the next
// iteration.
let mut outbuf = gst::Buffer::with_size(
self.current_samples_per_frame as usize * self.info.bpf() as usize,
)
.map_err(|_| gst::FlowError::Error)?;
{
let outbuf = outbuf.get_mut().unwrap();
let mut dst = outbuf.map_writable().map_err(|_| gst::FlowError::Error)?;
let dst = dst
.as_mut_slice_of::<f64>()
.map_err(|_| gst::FlowError::Error)?;
// This now consumes the next 100ms of limiter_buf for the output.
self.true_peak_limiter(element, dst);
self.r128_out
.add_frames_f64(dst)
.map_err(|_| gst::FlowError::Error)?;
}
self.process_update_gain_inner_frame(element)?;
// PTS is 2.9s seconds before the input PTS as we buffer 3s of samples and just
// outputted here the first 100ms of that.
let pts = pts
.into()
.map(|pts| pts + 100 * gst::ClockTime::MSECOND - 3 * gst::ClockTime::SECOND);
Ok((outbuf, pts))
}
fn process_fill_final_frame(
&mut self,
_element: &super::AudioLoudNorm,
idx: usize,
num_samples: usize,
) {
let channels = self.info.channels() as usize;
// Get gain for this and the next 100ms frame based the delta array
// and smoothened with a gaussian filter.
let gain = self.gaussian_filter(if self.index + 10 < 30 {
self.index + 10
} else {
self.index + 10 - 30
});
let gain_next = self.gaussian_filter(if self.index + 11 < 30 {
self.index + 11
} else {
self.index + 11 - 30
});
for n in idx..num_samples {
// Safety: Index ranges are checked below.
let (buf_read, limiter_buf) = unsafe {
let buf_read = self
.buf
.get_unchecked(self.buf_index..(self.buf_index + channels));
let limiter_buf = self
.limiter_buf
.get_unchecked_mut(self.limiter_buf_index..(self.limiter_buf_index + channels));
(buf_read, limiter_buf)
};
// Linearly interpolate between the current and next gain for each sample.
let current_gain =
(gain + ((n as f64 / num_samples as f64) * (gain_next - gain))) * self.offset;
for (o, i) in limiter_buf.iter_mut().zip(buf_read.iter()) {
*o = *i * current_gain;
}
self.limiter_buf_index += channels;
if self.limiter_buf_index >= self.limiter_buf.len() {
self.limiter_buf_index -= self.limiter_buf.len();
}
self.buf_index += channels;
if self.buf_index >= self.buf.len() {
self.buf_index -= self.buf.len();
}
}
}
fn process_final_frame(
&mut self,
element: &super::AudioLoudNorm,
src: &[f64],
pts: impl Into<Option<gst::ClockTime>>,
) -> Result<(gst::Buffer, Option<gst::ClockTime>), gst::FlowError> {
let channels = self.info.channels() as usize;
let num_samples = src.len() / channels;
// First process any new/leftover data we get passed. This is the same
// as for inner frames. After this we will have done all gain adjustments
// and all samples we ever output are in buf or limiter_buf.
self.process_fill_inner_frame(element, src);
// If we got passed less than 100ms in src then limiter_buf_index is now
// not yet at the correct read position! Adjust accordingly here so that all
// further reads come from the right position by copying over the next samples
// from buf.
if num_samples != FRAME_SIZE {
self.process_fill_final_frame(element, num_samples, FRAME_SIZE);
}
// Now repeatadly run the limiter, output the output gain, update the gains, copy further
// data from the buf to limiter_buf until we have output everything.
//
// At this point we have to output 3s - (FRAME_SIZE - num_samples)
// buf.
let out_num_samples = 30 * FRAME_SIZE - (FRAME_SIZE - num_samples);
let mut outbuf = gst::Buffer::with_size(out_num_samples * self.info.bpf() as usize)
.map_err(|_| gst::FlowError::Error)?;
{
let outbuf = outbuf.get_mut().unwrap();
let mut dst = outbuf.map_writable().map_err(|_| gst::FlowError::Error)?;
let dst = dst
.as_mut_slice_of::<f64>()
.map_err(|_| gst::FlowError::Error)?;
let mut smp_cnt = 0;
while smp_cnt < out_num_samples {
let frame_size = std::cmp::min(out_num_samples - smp_cnt, FRAME_SIZE);
let dst = &mut dst[(smp_cnt * channels)..((smp_cnt + frame_size) * channels)];
// This now consumes the next frame_size samples of limiter_buf for the output.
// Note that on the very last call this will read up to 10ms of old limiter_buf
// data but as this was already processed it will not find any peak in there and
// just pass through.
//if frame_size < FRAME_SIZE {
// self.limiter_buf_index += FRAME_SIZE - num_samples;
//}
self.true_peak_limiter(element, dst);
smp_cnt += frame_size;
if smp_cnt == out_num_samples {
break;
}
// Update the gain for the next iteration
self.r128_out
.add_frames_f64(dst)
.map_err(|_| gst::FlowError::Error)?;
self.process_update_gain_inner_frame(element)?;
// And now copy over the next block of samples from buf to limiter_buf
let next_frame_size = std::cmp::min(out_num_samples - smp_cnt, FRAME_SIZE);
self.process_fill_final_frame(element, 0, next_frame_size);
// Now for the very last frame we need to update the limiter buffer index by the
// amount of samples the last frame is short to reach the correct read position.
if next_frame_size < FRAME_SIZE {
self.limiter_buf_index += FRAME_SIZE - next_frame_size;
if self.limiter_buf_index > self.limiter_buf.len() {
self.limiter_buf_index -= self.limiter_buf.len();
}
}
}
}
// PTS is 2.9s seconds before the input PTS as we buffer 3s of samples and just
// outputted here the first 100ms of that.
let pts = pts
.into()
.map(|pts| pts + 100 * gst::ClockTime::MSECOND - 3 * gst::ClockTime::SECOND);
Ok((outbuf, pts))
}
fn process_linear_frame(
&mut self,
element: &super::AudioLoudNorm,
src: &[f64],
pts: impl Into<Option<gst::ClockTime>>,
) -> Result<(gst::Buffer, Option<gst::ClockTime>), gst::FlowError> {
// Apply a linear scale factor to the whole buffer
gst_debug!(
CAT,
obj: element,
"Applying linear gain adjustment of {}",
self.offset
);
let mut outbuf = gst::Buffer::with_size(src.len() * mem::size_of::<f64>())
.map_err(|_| gst::FlowError::Error)?;
{
let outbuf = outbuf.get_mut().unwrap();
let mut dst = outbuf.map_writable().map_err(|_| gst::FlowError::Error)?;
let dst = dst
.as_mut_slice_of::<f64>()
.map_err(|_| gst::FlowError::Error)?;
for (o, i) in dst.iter_mut().zip(src.iter()) {
*o = *i * self.offset;
}
self.r128_out
.add_frames_f64(dst)
.map_err(|_| gst::FlowError::Error)?;
}
// PTS is input PTS as we just pass through the data without latency.
Ok((outbuf, pts.into()))
}
fn process(
&mut self,
element: &super::AudioLoudNorm,
src: &[f64],
pts: impl Into<Option<gst::ClockTime>>,
) -> Result<(gst::Buffer, Option<gst::ClockTime>), gst::FlowError> {
self.r128_in
.add_frames_f64(src)
.map_err(|_| gst::FlowError::Error)?;
// If we are at the end and had less than 3s of samples overall, do simple linear volume
// adjustment. frame_type should only ever be set to Final at the end if we ended up in
// Inner state before.
if self.frame_type == FrameType::First
&& (src.len() / self.info.channels() as usize) < self.current_samples_per_frame as usize
{
self.process_first_frame_is_last(element)?;
}
match self.frame_type {
FrameType::First => self.process_first_frame(element, src, pts),
FrameType::Inner => self.process_inner_frame(element, src, pts),
FrameType::Final => self.process_final_frame(element, src, pts),
FrameType::Linear => self.process_linear_frame(element, src, pts),
}
}
fn true_peak_limiter_out(
&mut self,
element: &super::AudioLoudNorm,
mut smp_cnt: usize,
nb_samples: usize,
) -> usize {
// Default out state, check if we have a new peak to act on in the next frame
// and otherwise simply output all samples with the current gain adjustment.
let peak = self.detect_peak(smp_cnt, nb_samples - smp_cnt);
if let Some((peak_delta, peak_value)) = peak {
self.limiter_state = LimiterState::Attack;
self.env_cnt = 0;
self.sustain_cnt = None;
self.gain_reduction[0] = 1.;
self.gain_reduction[1] = self.target_tp / peak_value;
// Skip all samples that don't have to be adjusted because the peak is far
// enough in the future.
// Note: peak_delta=0 is LIMITER_LOOKAHEAD in the future and we have to start
// LIMITER_ATTACK_WINDOW before the peak position.
smp_cnt += LIMITER_LOOKAHEAD + peak_delta - LIMITER_ATTACK_WINDOW;
gst_debug!(
CAT,
obj: element,
"Found peak {} at sample {}, going to attack state at sample {} (gain reduction {}-{})",
peak_value,
smp_cnt + LIMITER_ATTACK_WINDOW,
smp_cnt,
self.gain_reduction[0],
self.gain_reduction[1]
);
} else {
// Process all samples, no peak found
smp_cnt = nb_samples;
}
smp_cnt
}
fn true_peak_limiter_attack(
&mut self,
element: &super::AudioLoudNorm,
mut smp_cnt: usize,
nb_samples: usize,
) -> usize {
let channels = self.info.channels() as usize;
// Attack state, we have a peak in the near future and need to apply gain
// reduction smoothly over the next milliseconds to not go over the threshold.
// Once env_cnt reaches attack window we're at the peak sample.
//
// As there might be another, higher peak right afterwards we still need to
// check for this and potentially update the gain reduction accordingly.
let peak = self.detect_peak(smp_cnt, nb_samples - smp_cnt);
let mut new_peak_smp_cnt = None;
if let Some((peak_delta, _)) = peak {
// If smp_cnt == new_peak_smp we're exactly 10ms before the new, higher
// peak and need to increase the slope.
new_peak_smp_cnt = Some(smp_cnt + peak_delta);
}
let mut index = self.limiter_buf_index + smp_cnt * channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
while self.env_cnt < LIMITER_ATTACK_WINDOW && smp_cnt < nb_samples {
// Stop once we're exactly 10ms before the new higher peak so we can
// restart the attack state.
if let Some(new_peak_smp_cnt) = new_peak_smp_cnt {
if smp_cnt == new_peak_smp_cnt {
break;
}
}
// Linear interpolation between the start and target gain reduction
let env = self.gain_reduction[0]
- (self.env_cnt as f64 / (LIMITER_ATTACK_WINDOW as f64 - 1.0)
* (self.gain_reduction[0] - self.gain_reduction[1]));
// Safety: Index checked below
let samples = unsafe {
self.limiter_buf
.get_unchecked_mut(index..(index + channels))
};
for sample in samples {
*sample *= env;
}
index += channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
smp_cnt += 1;
self.env_cnt += 1;
}
if let Some(new_peak_smp) = new_peak_smp_cnt {
assert!(smp_cnt < nb_samples);
// Sustain until we are exactly 10ms before the new peak in case
// we finished the attack window above already.
if smp_cnt < new_peak_smp {
for _ in smp_cnt..new_peak_smp {
// Safety: Index checked below
let samples = unsafe {
self.limiter_buf
.get_unchecked_mut(index..(index + channels))
};
for sample in samples {
*sample *= self.gain_reduction[1];
}
index += channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
}
smp_cnt = new_peak_smp;
}
assert!(smp_cnt < nb_samples);
let (_, peak_value) = peak.unwrap();
let gain_reduction = self.target_tp / peak_value;
// If the gain reduction is more than our current target gain reduction we
// need to change the attack state. If it less or the same we can simply
// contain the current attack state as we will end up at a low enough again
// before the new peak. We however have to remember to sustain at least
// that long.
if gain_reduction < self.gain_reduction[1] {
// If we need to change something we need to consider two different
// cases based on the slope of the gain reduction.
let current_gain_reduction = self.gain_reduction[0]
- (self.env_cnt as f64 / (LIMITER_ATTACK_WINDOW as f64 - 1.0)
* (self.gain_reduction[0] - self.gain_reduction[1]));
// Calculate the slopes. Note the minus!
let old_slope = -(self.gain_reduction[0] - self.gain_reduction[1]);
let new_slope = -(current_gain_reduction - gain_reduction);
if new_slope <= old_slope {
// If the slope from our current position to the new gain reduction at
// the new peak is higher (we need to reduce gain faster) then we
// restart the attack state at this point with the higher slope. We
// will then reach the new peak at the end of the attack window.
self.limiter_state = LimiterState::Attack;
self.gain_reduction[0] = current_gain_reduction;
self.gain_reduction[1] = gain_reduction;
self.env_cnt = 0;
self.sustain_cnt = None;
gst_debug!(
CAT,
obj: element,
"Found new peak {} at sample {}, restarting attack state at sample {} (gain reduction {}-{})",
peak_value,
smp_cnt + LIMITER_ATTACK_WINDOW,
smp_cnt,
self.gain_reduction[0],
self.gain_reduction[1],
);
} else {
// If the slope is lower we can't simply reduce the slope as we would
// then have a lower gain reduction than needed at the previous peak.
// Instead of continue with the same slope but continue further than
// the old peak until we reach the required gain reduction for the new
// peak. Just like above we need to remember to sustain from the end of
// the attack window until the new peak.
// Calculate at which point we would reach the new gain reduction
// relative to 0.0 == attack window start, 1.0 attack window end.
let new_end = (gain_reduction - self.gain_reduction[0]) / old_slope;
let new_end = f64::max(new_end, 1.0);
// New start of the window, this will be in the past
let new_start = new_end - 1.0;
// Gain reduction at the new start. Note the plus as the slope is
// negative already here.
//
// Clippy warning ignored here because this is just incidentally the same as
// AssignAdd: we calculate a new adjusted gain reduction here, and override the
// previous one.
#[allow(clippy::assign_op_pattern)]
{
self.gain_reduction[0] = self.gain_reduction[0] + new_start * old_slope;
}
// At env_cnt == ATTACK_WINDOW we need the new gain reduction
self.gain_reduction[1] = gain_reduction;
// Calculate the current position in the attack window
let cur_pos = (current_gain_reduction - self.gain_reduction[0]) / old_slope;
let cur_pos = f64::clamp(cur_pos, 0.0, 1.0);
self.env_cnt = ((LIMITER_ATTACK_WINDOW as f64 - 1.0) * cur_pos) as usize;
// Need to sustain in any case for this many samples to actually
// reach the new peak
self.sustain_cnt = Some(self.env_cnt);
gst_debug!(
CAT,
obj: element,
"Found new peak {} at sample {}, adjusting attack state at sample {} (gain reduction {}-{})",
peak_value,
smp_cnt + LIMITER_ATTACK_WINDOW,
smp_cnt,
self.gain_reduction[0],
self.gain_reduction[1],
);
}
return smp_cnt;
} else {
// We're ending the attack state this much before the new peak so need
// to ensure that we at least sustain it for that long afterwards.
gst_debug!(
CAT,
obj: element,
"Found new low peak {} at sample {} in attack state at sample {}",
peak_value,
smp_cnt + LIMITER_ATTACK_WINDOW,
smp_cnt,
);
if self.env_cnt < LIMITER_ATTACK_WINDOW {
self.sustain_cnt = Some(self.env_cnt);
}
}
}
if self.env_cnt == LIMITER_ATTACK_WINDOW && smp_cnt < nb_samples {
// If we reached the target gain reduction, go into sustain state.
gst_debug!(
CAT,
obj: element,
"Going to sustain state at sample {} (gain reduction {})",
smp_cnt,
self.gain_reduction[1]
);
self.limiter_state = LimiterState::Sustain;
// Keep sustain_cnt as is from above
}
smp_cnt
}
fn true_peak_limiter_sustain(
&mut self,
element: &super::AudioLoudNorm,
mut smp_cnt: usize,
nb_samples: usize,
) -> usize {
let channels = self.info.channels() as usize;
// Sustain the previous gain reduction as long as a peak is found in the
// next frame, otherwise go over to smoothly release.
let peak = self.detect_peak(smp_cnt, nb_samples - smp_cnt);
// We might have to sustain for a few more samples regardless of any new peak
// we find in 10ms because of code above (first frame or ending the attack
// state).
// If another peak was found afterwards we can start working with that one: if
// it's higher than we go into attack state, if it's lower we sustain for now.
if let Some(sustain_cnt) = peak.map(|(d, _v)| d).or(self.sustain_cnt) {
// Apply the final gain reduction from the previous attack for the next
// samples until we're 1920 samples / 10ms before the peak and then either
// need to go into attack state if the peak was higher, or stay in sustain
// state and check for the next peak.
let mut index = self.limiter_buf_index + smp_cnt * channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
// Sustain the current gain reduction until we're exactly 10ms before
// the new peak
let mut s = 0;
while s < sustain_cnt && smp_cnt < nb_samples {
// Safety: Index checked below
let samples = unsafe {
self.limiter_buf
.get_unchecked_mut(index..(index + channels))
};
for sample in samples {
*sample *= self.gain_reduction[1];
}
index += channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
smp_cnt += 1;
s += 1;
}
if let Some((_, peak_value)) = peak {
// If a higher peak than before is found in the next frame need to move
// into attack state again to reduce the gain smoothly further.
//
// Otherwise we stay in sustain mode and smp_cnt is now exactly 10ms before
// the new peak, i.e. the next call to detect_peak() would find the *next*
// peak.
let gain_reduction = self.target_tp / peak_value;
if gain_reduction < self.gain_reduction[1] {
self.limiter_state = LimiterState::Attack;
self.env_cnt = 0;
self.sustain_cnt = None;
self.gain_reduction[0] = self.gain_reduction[1];
self.gain_reduction[1] = gain_reduction;
gst_debug!(
CAT,
obj: element,
"Found new peak {} at sample {}, going back to attack state at sample {} (gain reduction {}-{})",
peak_value,
smp_cnt + LIMITER_ATTACK_WINDOW,
smp_cnt,
self.gain_reduction[0],
self.gain_reduction[1],
);
} else {
gst_debug!(
CAT,
obj: element,
"Found new peak {} at sample {}, going sustain further at sample {} (gain reduction {})",
peak_value,
smp_cnt + LIMITER_ATTACK_WINDOW,
smp_cnt,
self.gain_reduction[1],
);
// We need to sustain until the peak at least
self.sustain_cnt = Some(LIMITER_LOOKAHEAD);
}
} else if let Some(ref mut sustain_cnt) = self.sustain_cnt {
*sustain_cnt -= s;
if *sustain_cnt == 0 {
self.sustain_cnt = None;
}
} else {
unreachable!();
}
} else {
// If no new peak is found, release smoothly over the next 100ms.
self.limiter_state = LimiterState::Release;
self.gain_reduction[0] = self.gain_reduction[1];
self.gain_reduction[1] = 1.;
self.env_cnt = 0;
gst_debug!(
CAT,
obj: element,
"Going to release state for sample {} at sample {} (gain reduction {}-1.0)",
smp_cnt + LIMITER_RELEASE_WINDOW,
smp_cnt,
self.gain_reduction[0]
);
}
smp_cnt
}
fn true_peak_limiter_release(
&mut self,
element: &super::AudioLoudNorm,
mut smp_cnt: usize,
nb_samples: usize,
) -> usize {
let channels = self.info.channels() as usize;
// Smoothly release over the duration of 1 frame (100ms, 19200 samples).
let mut index = self.limiter_buf_index + smp_cnt * channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
// There might be a new peak during these 100ms, which we will have to detect
// and in that case go into attack state again if the gain reduction is higher
// than the current gain reduction we have, or go into sustain mode if it is
// equal or lower. We don't stay in release mode if a peak is found.
let peak = self.detect_peak(smp_cnt, nb_samples - smp_cnt);
if let Some((peak_delta, peak_value)) = peak {
let gain_reduction = self.target_tp / peak_value;
let current_gain_reduction = self.gain_reduction[0]
- (self.env_cnt as f64 / (LIMITER_RELEASE_WINDOW as f64 - 1.0)
* (self.gain_reduction[1] - self.gain_reduction[0]));
if gain_reduction < current_gain_reduction {
assert!(smp_cnt + peak_delta < nb_samples);
// Sustain the current gain reduction until we're exactly 10ms before
// the new peak
for _ in 0..peak_delta {
// Safety: Index checked below
let samples = unsafe {
self.limiter_buf
.get_unchecked_mut(index..(index + channels))
};
for sample in samples {
*sample *= self.gain_reduction[1];
}
index += channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
smp_cnt += 1;
assert!(smp_cnt < nb_samples);
}
self.limiter_state = LimiterState::Attack;
self.env_cnt = 0;
self.sustain_cnt = None;
self.gain_reduction[0] = current_gain_reduction;
self.gain_reduction[1] = gain_reduction;
gst_debug!(
CAT,
obj: element,
"Found new peak {} at sample {}, going back to attack state at sample {} (gain reduction {}-{})",
peak_value,
smp_cnt + LIMITER_ATTACK_WINDOW,
smp_cnt,
self.gain_reduction[0],
self.gain_reduction[1],
);
} else {
self.gain_reduction[1] = current_gain_reduction;
gst_debug!(
CAT,
obj: element,
"Going from release to sustain state at sample {} because of low peak {} at sample {} (gain reduction {})",
smp_cnt,
peak_value,
smp_cnt + LIMITER_ATTACK_WINDOW,
self.gain_reduction[1]
);
self.limiter_state = LimiterState::Sustain;
}
return smp_cnt;
}
while self.env_cnt < LIMITER_RELEASE_WINDOW && smp_cnt < nb_samples {
let env = self.gain_reduction[0]
- (self.env_cnt as f64 / (LIMITER_RELEASE_WINDOW as f64 - 1.0)
* (self.gain_reduction[1] - self.gain_reduction[0]));
// Safety: Index checked below
let samples = unsafe {
self.limiter_buf
.get_unchecked_mut(index..(index + channels))
};
for sample in samples {
*sample *= env;
}
index += channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
smp_cnt += 1;
self.env_cnt += 1;
}
// If we're done with the release, go to out state
if smp_cnt < nb_samples {
self.limiter_state = LimiterState::Out;
gst_debug!(
CAT,
obj: element,
"Leaving release state and going to out state at sample {}",
smp_cnt,
);
}
smp_cnt
}
fn true_peak_limiter_first_frame(&mut self, element: &super::AudioLoudNorm) {
let channels = self.info.channels() as usize;
assert_eq!(self.limiter_buf_index, 0);
let mut max = 0.;
for sample in &self.limiter_buf[0..((LIMITER_LOOKAHEAD + 1) * channels)] {
if sample.abs() > max {
max = *sample;
}
}
// Initialize the previous sample for peak detection with the last sample we looked at
// above
for (o, i) in self
.prev_smp
.iter_mut()
.zip(self.limiter_buf[(LIMITER_LOOKAHEAD * channels)..].iter())
{
*o = i.abs();
}
if max > self.target_tp {
// Pretend the first peak was at the last sample so that the sustain code can work
// as with normal peaks
self.limiter_state = LimiterState::Sustain;
self.sustain_cnt = Some(LIMITER_LOOKAHEAD);
self.gain_reduction[1] = self.target_tp / max;
gst_debug!(
CAT,
obj: element,
"Reducing gain for start of first frame by {} ({} > {}) and going to sustain state",
self.gain_reduction[1],
max,
self.target_tp
);
// The sustain code below will already handle the gain reduction and checking for
// further peaks.
}
}
fn true_peak_limiter(&mut self, element: &super::AudioLoudNorm, dst: &mut [f64]) {
let channels = self.info.channels() as usize;
let nb_samples = dst.len() / channels;
gst_debug!(
CAT,
obj: element,
"Running limiter for {} samples",
nb_samples
);
// For the first frame we can't adjust the gain before it smoothly anymore so instead
// apply the gain reduction immediately if we get above the threshold and move to sustain
// state directly.
if self.frame_type == FrameType::First {
self.true_peak_limiter_first_frame(element);
}
let mut smp_cnt = 0;
while smp_cnt < nb_samples {
match self.limiter_state {
LimiterState::Out => {
smp_cnt = self.true_peak_limiter_out(element, smp_cnt, nb_samples);
}
LimiterState::Attack => {
smp_cnt = self.true_peak_limiter_attack(element, smp_cnt, nb_samples);
}
LimiterState::Sustain => {
smp_cnt = self.true_peak_limiter_sustain(element, smp_cnt, nb_samples);
}
LimiterState::Release => {
smp_cnt = self.true_peak_limiter_release(element, smp_cnt, nb_samples);
}
}
}
// Copy over the samples into the output buffer, after going through the limiter above.
let mut index = self.limiter_buf_index;
for dest_samples in dst.chunks_exact_mut(channels) {
// Safety: Index checked below
let in_samples = unsafe {
self.limiter_buf
.get_unchecked_mut(index..(index + channels))
};
for (o, i) in dest_samples.iter_mut().zip(in_samples.iter()) {
*o = *i;
// Clamp to the maximum for rounding errors above
if o.abs() > self.target_tp {
*o = self.target_tp * o.signum();
}
}
index += channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
}
}
// Checks if there is a peak above the threshold 10ms or 1920 samples after the current
// sample. Returns the peak delta and its value. The peak delta is relative to
// offset + LIMITER_LOOKAHEAD (10ms), i.e. a peak delta of 0 would be 10ms after the offset.
//
// peak delta 0 is never returned, i.e. it is safe to call this 10ms before a peak and it would
// then return the next peak.
fn detect_peak(&mut self, offset: usize, samples: usize) -> Option<(usize, f64)> {
let channels = self.info.channels() as usize;
// Check for a peak 1920 samples / 10ms in the future
let mut index = self.limiter_buf_index + (offset + LIMITER_LOOKAHEAD) * channels;
if index >= self.limiter_buf.len() {
index -= self.limiter_buf.len();
}
for n in 0..samples {
let mut next_index = index + channels;
if next_index >= self.limiter_buf.len() {
next_index -= self.limiter_buf.len();
}
// Get the current sample for each channel and the next here
// Safety: Index checked above
let (this, next) = unsafe {
(
self.limiter_buf.get_unchecked(index..(index + channels)),
self.limiter_buf
.get_unchecked(next_index..(next_index + channels)),
)
};
let mut detected = false;
// Iterate over the previous sample for each channel, the current and the next, i.e.
// in each iteration we're looking at channel c for those 3 samples.
for (c, (prev_smp, (this, next))) in self
.prev_smp
.iter_mut()
.zip(this.iter().zip(next.iter()))
.enumerate()
{
let this = this.abs();
let next = next.abs();
detected = false;
// Check if the current sample is the highest peak
if (*prev_smp <= this) && (this >= next) && (this > self.target_tp) && (n > 0) {
detected = true;
// Check the 12 following samples, if one of them is higher then that would be
// the peak.
for i in 2..12 {
// Safety: Index checked right here
let next = unsafe {
let mut next_index = index + c + i * channels;
if next_index >= self.limiter_buf.len() {
next_index -= self.limiter_buf.len();
}
self.limiter_buf.get_unchecked(next_index).abs()
};
if next > this {
detected = false;
break;
}
}
if detected {
break;
}
}
// Remember as previous sample.
*prev_smp = this;
}
// If this was the highest peak then remember it as the previous sample (as we didn't
// just above here because of the break!) and return the peak index and value.
if detected {
let mut max_peak = 0.0;
for (c, (prev_smp, this)) in (self.prev_smp.iter_mut().zip(this.iter())).enumerate()
{
if c == 0 || this.abs() > max_peak {
max_peak = this.abs();
}
*prev_smp = this.abs();
}
return Some((n, max_peak));
}
index = next_index;
}
None
}
fn gaussian_filter(&self, index: usize) -> f64 {
let mut result = 0.;
let index = if index > 10 { index - 10 } else { index + 20 };
// Apply gaussian filter to the gain adjustments for smoothening them.
let delta = self.delta[index..].iter().chain(self.delta.iter());
for (weight, delta) in self.weights.iter().zip(delta) {
result += delta * weight;
}
result
}
}
impl AudioLoudNorm {
fn sink_chain(
&self,
_pad: &gst::Pad,
element: &super::AudioLoudNorm,
buffer: gst::Buffer,
) -> Result<gst::FlowSuccess, gst::FlowError> {
gst_log!(CAT, obj: element, "Handling buffer {:?}", buffer);
let mut state_guard = self.state.borrow_mut();
let state = match *state_guard {
None => {
gst_error!(CAT, obj: element, "Not negotiated yet");
return Err(gst::FlowError::NotNegotiated);
}
Some(ref mut state) => state,
};
let mut outbufs = vec![];
if buffer.flags().contains(gst::BufferFlags::DISCONT) {
gst_debug!(CAT, obj: element, "Draining on discontinuity");
match state.drain(element) {
Ok(outbuf) => {
outbufs.push(outbuf);
}
Err(gst::FlowError::Eos) => (),
Err(err) => return Err(err),
}
// Need to reset the state now
*state = State::new(&*self.settings.lock().unwrap(), state.info.clone());
}
state.adapter.push(buffer);
outbufs.append(&mut state.drain_full_frames(element)?);
drop(state_guard);
for buffer in outbufs {
gst_log!(CAT, obj: element, "Outputting buffer {:?}", buffer);
self.srcpad.push(buffer)?;
}
Ok(gst::FlowSuccess::Ok)
}
fn sink_event(
&self,
pad: &gst::Pad,
element: &super::AudioLoudNorm,
event: gst::Event,
) -> bool {
use gst::EventView;
gst_log!(CAT, obj: pad, "Handling event {:?}", event);
match event.view() {
EventView::Caps(c) => {
let caps = c.caps();
gst_info!(CAT, obj: pad, "Got caps {:?}", caps);
let info = match gst_audio::AudioInfo::from_caps(caps) {
Ok(info) => info,
Err(_) => {
gst_error!(CAT, obj: pad, "Failed to parse caps");
return false;
}
};
let mut state = self.state.borrow_mut();
let mut outbuf = None;
if let Some(ref mut state) = &mut *state {
outbuf = match state.drain(element) {
Ok(outbuf) => Some(outbuf),
Err(gst::FlowError::Eos) => None,
Err(_) => return false,
};
}
*state = Some(State::new(&*self.settings.lock().unwrap(), info));
drop(state);
if let Some(outbuf) = outbuf {
gst_log!(CAT, obj: element, "Outputting buffer {:?}", outbuf);
if let Err(err) = self.srcpad.push(outbuf) {
gst_error!(CAT, obj: element, "Failed to push drained data: {}", err);
return false;
}
}
}
EventView::Eos(_) => {
let mut state = self.state.borrow_mut();
let mut outbuf = None;
if let Some(ref mut state) = &mut *state {
outbuf = match state.drain(element) {
Ok(outbuf) => Some(outbuf),
Err(gst::FlowError::Eos) => None,
Err(_) => return false,
};
*state = State::new(&*self.settings.lock().unwrap(), state.info.clone());
}
drop(state);
if let Some(outbuf) = outbuf {
gst_log!(CAT, obj: element, "Outputting buffer {:?}", outbuf);
if let Err(err) = self.srcpad.push(outbuf) {
gst_error!(
CAT,
obj: element,
"Failed to push drained data on EOS: {}",
err
);
return false;
}
}
}
EventView::FlushStop(_) => {
// Resetting our whole state
let mut state = self.state.borrow_mut();
if let Some(info) = state.as_ref().map(|s| s.info.clone()) {
let settings = *self.settings.lock().unwrap();
*state = Some(State::new(&settings, info));
} else {
*state = None;
}
}
_ => (),
}
pad.event_default(Some(element), event)
}
#[allow(clippy::single_match)]
fn src_query(
&self,
pad: &gst::Pad,
element: &super::AudioLoudNorm,
query: &mut gst::QueryRef,
) -> bool {
use gst::QueryView;
gst_log!(CAT, obj: pad, "Handling query {:?}", query);
match query.view_mut() {
QueryView::Latency(ref mut q) => {
let mut peer_query = gst::query::Latency::new();
if self.sinkpad.peer_query(&mut peer_query) {
let (live, min_latency, max_latency) = peer_query.result();
q.set(
live,
min_latency + 3 * gst::ClockTime::SECOND,
max_latency.map(|max| max + 3 * gst::ClockTime::SECOND),
);
true
} else {
false
}
}
_ => pad.query_default(Some(element), query),
}
}
}
#[glib::object_subclass]
impl ObjectSubclass for AudioLoudNorm {
const NAME: &'static str = "RsAudioLoudNorm";
type Type = super::AudioLoudNorm;
type ParentType = gst::Element;
fn with_class(klass: &Self::Class) -> Self {
let templ = klass.pad_template("sink").unwrap();
let sinkpad = gst::Pad::builder_with_template(&templ, Some("sink"))
.chain_function(|pad, parent, buffer| {
Self::catch_panic_pad_function(
parent,
|| Err(gst::FlowError::Error),
|this, element| this.sink_chain(pad, element, buffer),
)
})
.event_function(|pad, parent, event| {
Self::catch_panic_pad_function(
parent,
|| false,
|this, element| this.sink_event(pad, element, event),
)
})
.flags(gst::PadFlags::PROXY_CAPS)
.build();
let templ = klass.pad_template("src").unwrap();
let srcpad = gst::Pad::builder_with_template(&templ, Some("src"))
.query_function(|pad, parent, query| {
Self::catch_panic_pad_function(
parent,
|| false,
|this, element| this.src_query(pad, element, query),
)
})
.flags(gst::PadFlags::PROXY_CAPS)
.build();
Self {
sinkpad,
srcpad,
settings: Mutex::new(Default::default()),
state: AtomicRefCell::new(None),
}
}
}
impl ObjectImpl for AudioLoudNorm {
fn properties() -> &'static [glib::ParamSpec] {
static PROPERTIES: Lazy<Vec<glib::ParamSpec>> = Lazy::new(|| {
vec![
glib::ParamSpec::new_double(
"loudness-target",
"Loudness Target",
"Loudness target in LUFS",
-70.0,
-5.0,
DEFAULT_LOUDNESS_TARGET,
glib::ParamFlags::READWRITE | gst::PARAM_FLAG_MUTABLE_READY,
),
glib::ParamSpec::new_double(
"loudness-range-target",
"Loudness Range Target",
"Loudness range target in LU",
1.0,
20.0,
DEFAULT_LOUDNESS_RANGE_TARGET,
glib::ParamFlags::READWRITE | gst::PARAM_FLAG_MUTABLE_READY,
),
glib::ParamSpec::new_double(
"max-true-peak",
"Maximum True Peak",
"Maximum True Peak in dbTP",
-9.0,
0.0,
DEFAULT_MAX_TRUE_PEAK,
glib::ParamFlags::READWRITE | gst::PARAM_FLAG_MUTABLE_READY,
),
glib::ParamSpec::new_double(
"offset",
"Offset Gain",
"Offset Gain in LU",
-99.0,
99.0,
DEFAULT_OFFSET,
glib::ParamFlags::READWRITE | gst::PARAM_FLAG_MUTABLE_READY,
),
]
});
PROPERTIES.as_ref()
}
fn constructed(&self, obj: &Self::Type) {
self.parent_constructed(obj);
obj.add_pad(&self.sinkpad).unwrap();
obj.add_pad(&self.srcpad).unwrap();
}
fn set_property(
&self,
_obj: &Self::Type,
_id: usize,
value: &glib::Value,
pspec: &glib::ParamSpec,
) {
match pspec.name() {
"loudness-target" => {
let mut settings = self.settings.lock().unwrap();
settings.loudness_target = value.get().expect("type checked upstream");
}
"loudness-range-target" => {
let mut settings = self.settings.lock().unwrap();
settings.loudness_range_target = value.get().expect("type checked upstream");
}
"max-true-peak" => {
let mut settings = self.settings.lock().unwrap();
settings.max_true_peak = value.get().expect("type checked upstream");
}
"offset" => {
let mut settings = self.settings.lock().unwrap();
settings.offset = value.get().expect("type checked upstream");
}
_ => unimplemented!(),
}
}
fn property(&self, _obj: &Self::Type, _id: usize, pspec: &glib::ParamSpec) -> glib::Value {
match pspec.name() {
"loudness-target" => {
let settings = self.settings.lock().unwrap();
settings.loudness_target.to_value()
}
"loudness-range-target" => {
let settings = self.settings.lock().unwrap();
settings.loudness_range_target.to_value()
}
"max-true-peak" => {
let settings = self.settings.lock().unwrap();
settings.max_true_peak.to_value()
}
"offset" => {
let settings = self.settings.lock().unwrap();
settings.offset.to_value()
}
_ => unimplemented!(),
}
}
}
impl ElementImpl for AudioLoudNorm {
fn metadata() -> Option<&'static gst::subclass::ElementMetadata> {
static ELEMENT_METADATA: Lazy<gst::subclass::ElementMetadata> = Lazy::new(|| {
gst::subclass::ElementMetadata::new(
"Audio loudness normalizer",
"Filter/Effect/Audio",
"Normalizes perceived loudness of an audio stream",
"Sebastian Dröge <sebastian@centricular.com>",
)
});
Some(&*ELEMENT_METADATA)
}
fn pad_templates() -> &'static [gst::PadTemplate] {
static PAD_TEMPLATES: Lazy<Vec<gst::PadTemplate>> = Lazy::new(|| {
let caps = gst::Caps::new_simple(
"audio/x-raw",
&[
("format", &gst_audio::AUDIO_FORMAT_F64.to_str()),
("rate", &192_000i32),
("channels", &gst::IntRange::<i32>::new(1, std::i32::MAX)),
("layout", &"interleaved"),
],
);
let src_pad_template = gst::PadTemplate::new(
"src",
gst::PadDirection::Src,
gst::PadPresence::Always,
&caps,
)
.unwrap();
let sink_pad_template = gst::PadTemplate::new(
"sink",
gst::PadDirection::Sink,
gst::PadPresence::Always,
&caps,
)
.unwrap();
vec![src_pad_template, sink_pad_template]
});
PAD_TEMPLATES.as_ref()
}
#[allow(clippy::single_match)]
fn change_state(
&self,
element: &Self::Type,
transition: gst::StateChange,
) -> Result<gst::StateChangeSuccess, gst::StateChangeError> {
let res = self.parent_change_state(element, transition);
match transition {
gst::StateChange::PausedToReady => {
// Drop state
*self.state.borrow_mut() = None;
}
_ => (),
}
res
}
}
fn init_gaussian_filter() -> [f64; 21] {
let mut weights = [0.0f64; 21];
let mut total_weight = 0.0f64;
let sigma = 3.5f64;
let offset = 21 / 2;
let c1 = 1.0 / (sigma * f64::sqrt(2.0 * std::f64::consts::PI));
let c2 = 2.0 * f64::powf(sigma, 2.0);
for (i, weight) in weights.iter_mut().enumerate() {
let x = i as f64 - offset as f64;
*weight = c1 * f64::exp(-(f64::powf(x, 2.0) / c2));
total_weight += *weight;
}
let adjust = 1.0 / total_weight;
for weight in weights.iter_mut() {
*weight *= adjust;
}
weights
}