/* GStreamer * Copyright (C) <2007> Wim Taymans * Copyright (C) 2015 Kurento (http://kurento.org/) * @author: Miguel ParĂ­s * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "rtpstats.h" void gst_rtp_packet_rate_ctx_reset (RTPPacketRateCtx * ctx, gint32 clock_rate) { ctx->clock_rate = clock_rate; ctx->probed = FALSE; ctx->avg_packet_rate = -1; ctx->last_ts = -1; } guint32 gst_rtp_packet_rate_ctx_update (RTPPacketRateCtx * ctx, guint16 seqnum, guint32 ts) { guint64 new_ts, diff_ts; gint diff_seqnum; gint32 new_packet_rate; if (ctx->clock_rate <= 0) { return ctx->avg_packet_rate; } new_ts = ctx->last_ts; gst_rtp_buffer_ext_timestamp (&new_ts, ts); if (!ctx->probed) { ctx->probed = TRUE; goto done; } diff_seqnum = gst_rtp_buffer_compare_seqnum (ctx->last_seqnum, seqnum); if (diff_seqnum <= 0 || new_ts <= ctx->last_ts || diff_seqnum > 1) { goto done; } diff_ts = new_ts - ctx->last_ts; diff_ts = gst_util_uint64_scale_int (diff_ts, GST_SECOND, ctx->clock_rate); new_packet_rate = gst_util_uint64_scale (diff_seqnum, GST_SECOND, diff_ts); /* The goal is that higher packet rates "win". * If there's a sudden burst, the average will go up fast, * but it will go down again slowly. * This is useful for bursty cases, where a lot of packets are close * to each other and should allow a higher reorder/dropout there. * Round up the new average. */ if ((gint32) ctx->avg_packet_rate > new_packet_rate) { ctx->avg_packet_rate = (7 * ctx->avg_packet_rate + new_packet_rate + 7) / 8; } else { ctx->avg_packet_rate = (ctx->avg_packet_rate + new_packet_rate + 1) / 2; } done: ctx->last_seqnum = seqnum; ctx->last_ts = new_ts; return ctx->avg_packet_rate; } guint32 gst_rtp_packet_rate_ctx_get (RTPPacketRateCtx * ctx) { return ctx->avg_packet_rate; } guint32 gst_rtp_packet_rate_ctx_get_max_dropout (RTPPacketRateCtx * ctx, gint32 time_ms) { if (time_ms <= 0 || !ctx->probed || ctx->avg_packet_rate == G_MAXUINT32) { return RTP_DEF_DROPOUT; } return MAX (RTP_MIN_DROPOUT, ctx->avg_packet_rate * time_ms / 1000); } guint32 gst_rtp_packet_rate_ctx_get_max_misorder (RTPPacketRateCtx * ctx, gint32 time_ms) { if (time_ms <= 0 || !ctx->probed || ctx->avg_packet_rate == G_MAXUINT32) { return RTP_DEF_MISORDER; } return MAX (RTP_MIN_MISORDER, ctx->avg_packet_rate * time_ms / 1000); } /** * rtp_stats_init_defaults: * @stats: an #RTPSessionStats struct * * Initialize @stats with its default values. */ void rtp_stats_init_defaults (RTPSessionStats * stats) { rtp_stats_set_bandwidths (stats, -1, -1, -1, -1); stats->min_interval = RTP_STATS_MIN_INTERVAL; stats->bye_timeout = RTP_STATS_BYE_TIMEOUT; stats->nacks_dropped = 0; stats->nacks_sent = 0; stats->nacks_received = 0; } /** * rtp_stats_set_bandwidths: * @stats: an #RTPSessionStats struct * @rtp_bw: RTP bandwidth * @rtcp_bw: RTCP bandwidth * @rs: sender RTCP bandwidth * @rr: receiver RTCP bandwidth * * Configure the bandwidth parameters in the stats. When an input variable is * set to -1, it will be calculated from the other input variables and from the * defaults. */ void rtp_stats_set_bandwidths (RTPSessionStats * stats, guint rtp_bw, gdouble rtcp_bw, guint rs, guint rr) { GST_DEBUG ("recalc bandwidths: RTP %u, RTCP %f, RS %u, RR %u", rtp_bw, rtcp_bw, rs, rr); /* when given, sender and receive bandwidth add up to the total * rtcp bandwidth */ if (rs != G_MAXUINT && rr != G_MAXUINT) rtcp_bw = rs + rr; /* If rtcp_bw is between 0 and 1, it is a fraction of rtp_bw */ if (rtcp_bw > 0.0 && rtcp_bw < 1.0) { if (rtp_bw > 0.0) rtcp_bw = rtp_bw * rtcp_bw; else rtcp_bw = -1.0; } /* RTCP is 5% of the RTP bandwidth */ if (rtp_bw == G_MAXUINT && rtcp_bw > 1.0) rtp_bw = rtcp_bw * 20; else if (rtp_bw != G_MAXUINT && rtcp_bw < 0.0) rtcp_bw = rtp_bw / 20; else if (rtp_bw == G_MAXUINT && rtcp_bw < 0.0) { /* nothing given, take defaults */ rtp_bw = RTP_STATS_BANDWIDTH; rtcp_bw = rtp_bw * RTP_STATS_RTCP_FRACTION; } stats->bandwidth = rtp_bw; stats->rtcp_bandwidth = rtcp_bw; /* now figure out the fractions */ if (rs == G_MAXUINT) { /* rs unknown */ if (rr == G_MAXUINT) { /* both not given, use defaults */ rs = stats->rtcp_bandwidth * RTP_STATS_SENDER_FRACTION; rr = stats->rtcp_bandwidth * RTP_STATS_RECEIVER_FRACTION; } else { /* rr known, calculate rs */ if (stats->rtcp_bandwidth > rr) rs = stats->rtcp_bandwidth - rr; else rs = 0; } } else if (rr == G_MAXUINT) { /* rs known, calculate rr */ if (stats->rtcp_bandwidth > rs) rr = stats->rtcp_bandwidth - rs; else rr = 0; } if (stats->rtcp_bandwidth > 0) { stats->sender_fraction = ((gdouble) rs) / ((gdouble) stats->rtcp_bandwidth); stats->receiver_fraction = 1.0 - stats->sender_fraction; } else { /* no RTCP bandwidth, set dummy values */ stats->sender_fraction = 0.0; stats->receiver_fraction = 0.0; } GST_DEBUG ("bandwidths: RTP %u, RTCP %u, RS %f, RR %f", stats->bandwidth, stats->rtcp_bandwidth, stats->sender_fraction, stats->receiver_fraction); } /** * rtp_stats_calculate_rtcp_interval: * @stats: an #RTPSessionStats struct * @sender: if we are a sender * @profile: RTP profile of this session * @ptp: if this session is a point-to-point session * @first: if this is the first time * * Calculate the RTCP interval. The result of this function is the amount of * time to wait (in nanoseconds) before sending a new RTCP message. * * Returns: the RTCP interval. */ GstClockTime rtp_stats_calculate_rtcp_interval (RTPSessionStats * stats, gboolean we_send, GstRTPProfile profile, gboolean ptp, gboolean first) { gdouble members, senders, n; gdouble avg_rtcp_size, rtcp_bw; gdouble interval; gdouble rtcp_min_time; if (profile == GST_RTP_PROFILE_AVPF || profile == GST_RTP_PROFILE_SAVPF) { /* RFC 4585 3.4d), 3.5.1 */ if (first && !ptp) rtcp_min_time = 1.0; else rtcp_min_time = 0.0; } else { /* Very first call at application start-up uses half the min * delay for quicker notification while still allowing some time * before reporting for randomization and to learn about other * sources so the report interval will converge to the correct * interval more quickly. */ rtcp_min_time = stats->min_interval; if (first) rtcp_min_time /= 2.0; } /* Dedicate a fraction of the RTCP bandwidth to senders unless * the number of senders is large enough that their share is * more than that fraction. */ n = members = stats->active_sources; senders = (gdouble) stats->sender_sources; rtcp_bw = stats->rtcp_bandwidth; if (senders <= members * stats->sender_fraction) { if (we_send) { rtcp_bw *= stats->sender_fraction; n = senders; } else { rtcp_bw *= stats->receiver_fraction; n -= senders; } } /* no bandwidth for RTCP, return NONE to signal that we don't want to send * RTCP packets */ if (rtcp_bw <= 0.0001) return GST_CLOCK_TIME_NONE; avg_rtcp_size = 8.0 * stats->avg_rtcp_packet_size; /* * The effective number of sites times the average packet size is * the total number of octets sent when each site sends a report. * Dividing this by the effective bandwidth gives the time * interval over which those packets must be sent in order to * meet the bandwidth target, with a minimum enforced. In that * time interval we send one report so this time is also our * average time between reports. */ GST_DEBUG ("avg size %f, n %f, rtcp_bw %f", avg_rtcp_size, n, rtcp_bw); interval = avg_rtcp_size * n / rtcp_bw; if (interval < rtcp_min_time) interval = rtcp_min_time; return interval * GST_SECOND; } /** * rtp_stats_add_rtcp_jitter: * @stats: an #RTPSessionStats struct * @interval: an RTCP interval * * Apply a random jitter to the @interval. @interval is typically obtained with * rtp_stats_calculate_rtcp_interval(). * * Returns: the new RTCP interval. */ GstClockTime rtp_stats_add_rtcp_jitter (RTPSessionStats * stats G_GNUC_UNUSED, GstClockTime interval) { gdouble temp; /* see RFC 3550 p 30 * To compensate for "unconditional reconsideration" converging to a * value below the intended average. */ #define COMPENSATION (2.71828 - 1.5); temp = (interval * g_random_double_range (0.5, 1.5)) / COMPENSATION; return (GstClockTime) temp; } /** * rtp_stats_calculate_bye_interval: * @stats: an #RTPSessionStats struct * * Calculate the BYE interval. The result of this function is the amount of * time to wait (in nanoseconds) before sending a BYE message. * * Returns: the BYE interval. */ GstClockTime rtp_stats_calculate_bye_interval (RTPSessionStats * stats) { gdouble members; gdouble avg_rtcp_size, rtcp_bw; gdouble interval; gdouble rtcp_min_time; /* no interval when we have less than 50 members */ if (stats->active_sources < 50) return 0; rtcp_min_time = (stats->min_interval) / 2.0; /* Dedicate a fraction of the RTCP bandwidth to senders unless * the number of senders is large enough that their share is * more than that fraction. */ members = stats->bye_members; rtcp_bw = stats->rtcp_bandwidth * stats->receiver_fraction; /* no bandwidth for RTCP, return NONE to signal that we don't want to send * RTCP packets */ if (rtcp_bw <= 0.0001) return GST_CLOCK_TIME_NONE; avg_rtcp_size = 8.0 * stats->avg_rtcp_packet_size; /* * The effective number of sites times the average packet size is * the total number of octets sent when each site sends a report. * Dividing this by the effective bandwidth gives the time * interval over which those packets must be sent in order to * meet the bandwidth target, with a minimum enforced. In that * time interval we send one report so this time is also our * average time between reports. */ interval = avg_rtcp_size * members / rtcp_bw; if (interval < rtcp_min_time) interval = rtcp_min_time; return interval * GST_SECOND; } /** * rtp_stats_get_packets_lost: * @stats: an #RTPSourceStats struct * * Calculate the total number of RTP packets lost since beginning of * reception. Packets that arrive late are not considered lost, and * duplicates are not taken into account. Hence, the loss may be negative * if there are duplicates. * * Returns: total RTP packets lost. */ gint64 rtp_stats_get_packets_lost (const RTPSourceStats * stats) { gint64 lost; guint64 extended_max, expected; extended_max = stats->cycles + stats->max_seq; expected = extended_max - stats->base_seq + 1; lost = expected - stats->packets_received; return lost; } void rtp_stats_set_min_interval (RTPSessionStats * stats, gdouble min_interval) { stats->min_interval = min_interval; } gboolean __g_socket_address_equal (GSocketAddress * a, GSocketAddress * b) { GInetSocketAddress *ia, *ib; GInetAddress *iaa, *iab; ia = G_INET_SOCKET_ADDRESS (a); ib = G_INET_SOCKET_ADDRESS (b); if (g_inet_socket_address_get_port (ia) != g_inet_socket_address_get_port (ib)) return FALSE; iaa = g_inet_socket_address_get_address (ia); iab = g_inet_socket_address_get_address (ib); return g_inet_address_equal (iaa, iab); } gchar * __g_socket_address_to_string (GSocketAddress * addr) { GInetSocketAddress *ia; gchar *ret, *tmp; ia = G_INET_SOCKET_ADDRESS (addr); tmp = g_inet_address_to_string (g_inet_socket_address_get_address (ia)); ret = g_strdup_printf ("%s:%u", tmp, g_inet_socket_address_get_port (ia)); g_free (tmp); return ret; }