cosmopolitan/libc/calls/sigaction.c
Justine Tunney 791f79fcb3
Make improvements
- We now serialize the file descriptor table when spawning / executing
  processes on Windows. This means you can now inherit more stuff than
  just standard i/o. It's needed by bash, which duplicates the console
  to file descriptor #255. We also now do a better job serializing the
  environment variables, so you're less likely to encounter E2BIG when
  using your bash shell. We also no longer coerce environ to uppercase

- execve() on Windows now remotely controls its parent process to make
  them spawn a replacement for itself. Then it'll be able to terminate
  immediately once the spawn succeeds, without having to linger around
  for the lifetime as a shell process for proxying the exit code. When
  process worker thread running in the parent sees the child die, it's
  given a handle to the new child, to replace it in the process table.

- execve() and posix_spawn() on Windows will now provide CreateProcess
  an explicit handle list. This allows us to remove handle locks which
  enables better fork/spawn concurrency, with seriously correct thread
  safety. Other codebases like Go use the same technique. On the other
  hand fork() still favors the conventional WIN32 inheritence approach
  which can be a little bit messy, but is *controlled* by guaranteeing
  perfectly clean slates at both the spawning and execution boundaries

- sigset_t is now 64 bits. Having it be 128 bits was a mistake because
  there's no reason to use that and it's only supported by FreeBSD. By
  using the system word size, signal mask manipulation on Windows goes
  very fast. Furthermore @asyncsignalsafe funcs have been rewritten on
  Windows to take advantage of signal masking, now that it's much more
  pleasant to use.

- All the overlapped i/o code on Windows has been rewritten for pretty
  good signal and cancelation safety. We're now able to ensure overlap
  data structures are cleaned up so long as you don't longjmp() out of
  out of a signal handler that interrupted an i/o operation. Latencies
  are also improved thanks to the removal of lots of "busy wait" code.
  Waits should be optimal for everything except poll(), which shall be
  the last and final demon we slay in the win32 i/o horror show.

- getrusage() on Windows is now able to report RUSAGE_CHILDREN as well
  as RUSAGE_SELF, thanks to aggregation in the process manager thread.
2023-10-08 08:59:53 -07:00

503 lines
19 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/calls/struct/sigaction.h"
#include "ape/sections.internal.h"
#include "libc/assert.h"
#include "libc/calls/calls.h"
#include "libc/calls/internal.h"
#include "libc/calls/sig.internal.h"
#include "libc/calls/state.internal.h"
#include "libc/calls/struct/sigaction.h"
#include "libc/calls/struct/sigaction.internal.h"
#include "libc/calls/struct/siginfo.internal.h"
#include "libc/calls/syscall-sysv.internal.h"
#include "libc/calls/syscall_support-sysv.internal.h"
#include "libc/calls/ucontext.h"
#include "libc/dce.h"
#include "libc/intrin/asan.internal.h"
#include "libc/intrin/bits.h"
#include "libc/intrin/describeflags.internal.h"
#include "libc/intrin/dll.h"
#include "libc/intrin/strace.internal.h"
#include "libc/limits.h"
#include "libc/log/backtrace.internal.h"
#include "libc/log/log.h"
#include "libc/macros.internal.h"
#include "libc/mem/mem.h"
#include "libc/runtime/runtime.h"
#include "libc/str/str.h"
#include "libc/sysv/consts/limits.h"
#include "libc/sysv/consts/sa.h"
#include "libc/sysv/consts/sig.h"
#include "libc/sysv/errfuns.h"
#include "libc/thread/posixthread.internal.h"
#include "libc/thread/thread.h"
#include "libc/thread/tls.h"
#define SA_RESTORER 0x04000000
static void sigaction_cosmo2native(union metasigaction *sa) {
void *handler;
uint64_t flags;
void *restorer;
uint32_t masklo;
uint32_t maskhi;
if (!sa) return;
flags = sa->cosmo.sa_flags;
handler = sa->cosmo.sa_handler;
restorer = sa->cosmo.sa_restorer;
masklo = sa->cosmo.sa_mask;
maskhi = sa->cosmo.sa_mask >> 32;
if (IsLinux()) {
sa->linux.sa_flags = flags;
sa->linux.sa_handler = handler;
sa->linux.sa_restorer = restorer;
sa->linux.sa_mask[0] = masklo;
sa->linux.sa_mask[1] = maskhi;
} else if (IsXnu()) {
sa->xnu_in.sa_flags = flags;
sa->xnu_in.sa_handler = handler;
sa->xnu_in.sa_restorer = restorer;
sa->xnu_in.sa_mask[0] = masklo;
} else if (IsFreebsd()) {
sa->freebsd.sa_flags = flags;
sa->freebsd.sa_handler = handler;
sa->freebsd.sa_mask[0] = masklo;
sa->freebsd.sa_mask[1] = maskhi;
sa->freebsd.sa_mask[2] = 0;
sa->freebsd.sa_mask[3] = 0;
} else if (IsOpenbsd()) {
sa->openbsd.sa_flags = flags;
sa->openbsd.sa_handler = handler;
sa->openbsd.sa_mask[0] = masklo;
} else if (IsNetbsd()) {
sa->netbsd.sa_flags = flags;
sa->netbsd.sa_handler = handler;
sa->netbsd.sa_mask[0] = masklo;
sa->netbsd.sa_mask[1] = maskhi;
sa->netbsd.sa_mask[2] = 0;
sa->netbsd.sa_mask[3] = 0;
}
}
static void sigaction_native2cosmo(union metasigaction *sa) {
void *handler;
uint64_t flags;
void *restorer = 0;
uint32_t masklo;
uint32_t maskhi = 0;
if (!sa) return;
if (IsLinux()) {
flags = sa->linux.sa_flags;
handler = sa->linux.sa_handler;
restorer = sa->linux.sa_restorer;
masklo = sa->linux.sa_mask[0];
maskhi = sa->linux.sa_mask[1];
} else if (IsXnu()) {
flags = sa->xnu_out.sa_flags;
handler = sa->xnu_out.sa_handler;
masklo = sa->xnu_out.sa_mask[0];
} else if (IsFreebsd()) {
flags = sa->freebsd.sa_flags;
handler = sa->freebsd.sa_handler;
masklo = sa->freebsd.sa_mask[0];
maskhi = sa->freebsd.sa_mask[1];
} else if (IsOpenbsd()) {
flags = sa->openbsd.sa_flags;
handler = sa->openbsd.sa_handler;
masklo = sa->openbsd.sa_mask[0];
} else if (IsNetbsd()) {
flags = sa->netbsd.sa_flags;
handler = sa->netbsd.sa_handler;
masklo = sa->netbsd.sa_mask[0];
maskhi = sa->netbsd.sa_mask[1];
} else {
return;
}
sa->cosmo.sa_flags = flags;
sa->cosmo.sa_handler = handler;
sa->cosmo.sa_restorer = restorer;
sa->cosmo.sa_mask = masklo | (uint64_t)maskhi << 32;
}
static int __sigaction(int sig, const struct sigaction *act,
struct sigaction *oldact) {
_Static_assert(
(sizeof(struct sigaction) >= sizeof(struct sigaction_linux) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_xnu_in) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_xnu_out) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_freebsd) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_openbsd) &&
sizeof(struct sigaction) >= sizeof(struct sigaction_netbsd)),
"sigaction cosmo abi needs tuning");
int64_t arg4, arg5;
int rc, rva, oldrva;
sigaction_f sigenter;
struct sigaction *ap, copy;
if (IsMetal()) return enosys(); /* TODO: Signals on Metal */
if (!(1 <= sig && sig <= _NSIG)) return einval();
if (sig == SIGKILL || sig == SIGSTOP) return einval();
if (IsAsan() && ((act && !__asan_is_valid(act, sizeof(*act))) ||
(oldact && !__asan_is_valid(oldact, sizeof(*oldact))))) {
return efault();
}
if (!act) {
rva = (int32_t)(intptr_t)SIG_DFL;
} else if ((intptr_t)act->sa_handler < kSigactionMinRva) {
rva = (int)(intptr_t)act->sa_handler;
} else if ((intptr_t)act->sa_handler >=
(intptr_t)&__executable_start + kSigactionMinRva &&
(intptr_t)act->sa_handler <
(intptr_t)&__executable_start + INT_MAX) {
rva = (int)((uintptr_t)act->sa_handler - (uintptr_t)&__executable_start);
} else {
return efault();
}
if (__vforked && rva != (intptr_t)SIG_DFL && rva != (intptr_t)SIG_IGN) {
return einval();
}
if (!IsWindows()) {
if (act) {
memcpy(&copy, act, sizeof(copy));
ap = &copy;
if (IsLinux()) {
if (!(ap->sa_flags & SA_RESTORER)) {
ap->sa_flags |= SA_RESTORER;
ap->sa_restorer = &__restore_rt;
}
if (__iswsl1()) {
sigenter = __sigenter_wsl;
} else {
sigenter = ap->sa_sigaction;
}
} else if (IsXnu()) {
ap->sa_restorer = (void *)&__sigenter_xnu;
sigenter = __sigenter_xnu;
// mitigate Rosetta signal handling strangeness
// https://github.com/jart/cosmopolitan/issues/455
ap->sa_flags |= SA_SIGINFO;
} else if (IsNetbsd()) {
sigenter = __sigenter_netbsd;
} else if (IsFreebsd()) {
sigenter = __sigenter_freebsd;
} else if (IsOpenbsd()) {
sigenter = __sigenter_openbsd;
} else {
return enosys();
}
if (rva < kSigactionMinRva) {
ap->sa_sigaction = (void *)(intptr_t)rva;
} else {
ap->sa_sigaction = sigenter;
}
sigaction_cosmo2native((union metasigaction *)ap);
} else {
ap = NULL;
}
if (IsXnu()) {
arg4 = (int64_t)(intptr_t)oldact; /* from go code */
arg5 = 0;
} else if (IsNetbsd()) {
/* int __sigaction_sigtramp(int signum,
const struct sigaction *nsa,
struct sigaction *osa,
const void *tramp,
int vers); */
if (ap) {
arg4 = (int64_t)(intptr_t)&__restore_rt_netbsd;
arg5 = 2; /* netbsd/lib/libc/arch/x86_64/sys/__sigtramp2.S */
} else {
arg4 = 0;
arg5 = 0; /* netbsd/lib/libc/arch/x86_64/sys/__sigtramp2.S */
}
} else {
arg4 = 8; /* or linux whines */
arg5 = 0;
}
if ((rc = sys_sigaction(sig, ap, oldact, arg4, arg5)) != -1) {
sigaction_native2cosmo((union metasigaction *)oldact);
}
} else {
if (oldact) {
bzero(oldact, sizeof(*oldact));
oldrva = __sighandrvas[sig];
oldact->sa_flags = __sighandflags[sig];
oldact->sa_sigaction =
(sigaction_f)(oldrva < kSigactionMinRva
? oldrva
: (intptr_t)&__executable_start + oldrva);
}
rc = 0;
}
if (rc != -1 && !__vforked) {
if (act) {
__sighandrvas[sig] = rva;
__sighandmask[sig] = act->sa_mask;
__sighandflags[sig] = act->sa_flags;
if (IsWindows() && __sig_ignored(sig)) {
__sig_delete(sig);
}
}
}
return rc;
}
/**
* Installs handler for kernel interrupt to thread, e.g.:
*
* void GotCtrlC(int sig, siginfo_t *si, void *arg) {
* ucontext_t *ctx = arg;
* }
* struct sigaction sa = {.sa_sigaction = GotCtrlC,
* .sa_flags = SA_RESETHAND|SA_RESTART|SA_SIGINFO};
* CHECK_NE(-1, sigaction(SIGINT, &sa, NULL));
*
* The following flags are supported across platforms:
*
* - `SA_SIGINFO`: Causes the `siginfo_t` and `ucontext_t` parameters to
* be passed. `void *ctx` actually refers to `struct ucontext *`.
* This not only gives you more information about the signal, but also
* allows your signal handler to change the CPU registers. That's
* useful for recovering from crashes. If you don't use this attribute,
* then signal delivery will go a little faster.
*
* - `SA_RESTART`: Enables BSD signal handling semantics. Normally i/o
* entrypoints check for pending signals to deliver. If one gets
* delivered during an i/o call, the normal behavior is to cancel the
* i/o operation and return -1 with EINTR in errno. If you use the
* `SA_RESTART` flag then that behavior changes, so that any function
* that's been annotated with @restartable will not return `EINTR` and
* will instead resume the i/o operation. This makes coding easier but
* it can be an anti-pattern if not used carefully, since poor usage
* can easily result in latency issues. It also requires one to do
* more work in signal handlers, so special care needs to be given to
* which C library functions are @asyncsignalsafe.
*
* - `SA_RESETHAND`: Causes signal handler to be single-shot. This means
* that, upon entry of delivery to a signal handler, it's reset to the
* `SIG_DFL` handler automatically. You may use the alias `SA_ONESHOT`
* for this flag, which means the same thing.
*
* - `SA_NODEFER`: Disables the reentrancy safety check on your signal
* handler. Normally that's a good thing, since for instance if your
* `SIGSEGV` signal handler happens to segfault, you're going to want
* your process to just crash rather than looping endlessly. But in
* some cases it's desirable to use `SA_NODEFER` instead, such as at
* times when you wish to `longjmp()` out of your signal handler and
* back into your program. This is only safe to do across platforms
* for non-crashing signals such as `SIGCHLD` and `SIGINT`. Crash
* handlers should use Xed instead to recover execution, because on
* Windows a `SIGSEGV` or `SIGTRAP` crash handler might happen on a
* separate stack and/or a separate thread. You may use the alias
* `SA_NOMASK` for this flag, which means the same thing.
*
* - `SA_NOCLDWAIT`: Changes `SIGCHLD` so the zombie is gone and you
* can't call `wait()` anymore; similar but may
* still deliver the SIGCHLD.
*
* - `SA_NOCLDSTOP`: Lets you set `SIGCHLD` handler that's only notified
* on exit/termination and not notified on `SIGSTOP`, `SIGTSTP`,
* `SIGTTIN`, `SIGTTOU`, or `SIGCONT`.
*
* Here's an example of the most professional way to handle signals in
* an i/o event loop. It's generally a best practice to have signal
* handlers do the fewest number of things possible. The trick is to
* have your signals work hand-in-glove with the EINTR errno. This
* obfuscates the need for having to worry about @asyncsignalsafe.
*
* static volatile bool gotctrlc;
*
* void OnCtrlC(int sig) {
* gotctrlc = true;
* }
*
* int main() {
* size_t got;
* ssize_t rc;
* char buf[1];
* struct sigaction oldint;
* struct sigaction saint = {.sa_handler = GotCtrlC};
* if (sigaction(SIGINT, &saint, &oldint) == -1) {
* perror("sigaction");
* exit(1);
* }
* for (;;) {
* rc = read(0, buf, sizeof(buf));
* if (rc == -1) {
* if (errno == EINTR) {
* if (gotctrlc) {
* break;
* }
* } else {
* perror("read");
* exit(2);
* }
* }
* if (!(got = rc)) {
* break;
* }
* for (;;) {
* rc = write(1, buf, got);
* if (rc != -1) {
* assert(rc == 1);
* break;
* } else if (errno != EINTR) {
* perror("write");
* exit(3);
* }
* }
* }
* sigaction(SIGINT, &oldint, 0);
* }
*
* Please note that you can't do the above if you use SA_RESTART. Since
* the purpose of SA_RESTART is to restart i/o operations whose docs say
* that they're @restartable and read() is one such function. Here's
* some even better news: if you don't install any signal handlers at
* all, then your i/o calls will never be interrupted!
*
* Here's an example of the most professional way to recover from
* `SIGSEGV`, `SIGFPE`, and `SIGILL`.
*
* void ContinueOnCrash(void);
*
* void SkipOverFaultingInstruction(struct ucontext *ctx) {
* struct XedDecodedInst xedd;
* xed_decoded_inst_zero_set_mode(&xedd, XED_MACHINE_MODE_LONG_64);
* xed_instruction_length_decode(&xedd, (void *)ctx->uc_mcontext.rip, 15);
* ctx->uc_mcontext.rip += xedd.length;
* }
*
* void OnCrash(int sig, struct siginfo *si, void *vctx) {
* struct ucontext *ctx = vctx;
* SkipOverFaultingInstruction(ctx);
* ContinueOnCrash(); // reinstall here in case *rip faults
* }
*
* void ContinueOnCrash(void) {
* struct sigaction sa = {.sa_handler = OnSigSegv,
* .sa_flags = SA_SIGINFO | SA_RESETHAND};
* sigaction(SIGSEGV, &sa, 0);
* sigaction(SIGFPE, &sa, 0);
* sigaction(SIGILL, &sa, 0);
* }
*
* int main() {
* ContinueOnCrash();
* // ...
* }
*
* You may also edit any other CPU registers during the handler. For
* example, you can use the above technique so that division by zero
* becomes defined to a specific value of your choosing!
*
* Please note that Xed isn't needed to recover from `SIGTRAP` which can
* be raised at any time by embedding `DebugBreak()` or `asm("int3")` in
* your program code. Your signal handler will automatically skip over
* the interrupt instruction, assuming your signal handler returns.
*
* The important signals supported across all platforms are:
*
* - `SIGINT`: When you press Ctrl-C this signal gets broadcasted to
* your process session group. This is the normal way to terminate
* console applications.
*
* - `SIGQUIT`: When you press CTRL-\ this signal gets broadcasted to
* your process session group. This is the irregular way to kill an
* application in cases where maybe your `SIGINT` handler is broken
* although, Cosmopolitan Libc ShowCrashReports() should program it
* such as to attach a debugger to the process if possible, or else
* show a crash report. Also note that in New Technology you should
* press CTRL+BREAK rather than CTRL+\ to get this signal.
*
* - `SIGHUP`: This gets sent to your non-daemon processes when you
* close your terminal session.
*
* - `SIGTERM` is what the `kill` command sends by default. It's the
* choice signal for terminating daemons.
*
* - `SIGUSR1` and `SIGUSR2` can be anything you want. Their default
* action is to kill the process. By convention `SIGUSR1` is usually
* used by daemons to reload the config file.
*
* - `SIGCHLD` is sent when a process terminates and it takes a certain
* degree of UNIX mastery to address sanely.
*
* - `SIGALRM` is invoked by `setitimer()` and `alarm()`. It can be
* useful for interrupting i/o operations like `connect()`.
*
* - `SIGTRAP`: This happens when an INT3 instruction is encountered.
*
* - `SIGILL` happens on illegal instructions, e.g. `UD2`.
*
* - `SIGABRT` happens when you call `abort()`.
*
* - `SIGFPE` happens when you divide ints by zero, among other things.
*
* - `SIGSEGV` and `SIGBUS` indicate memory access errors and they have
* inconsistent semantics across platforms like FreeBSD.
*
* - `SIGWINCH` is sent when your terminal window is resized.
*
* - `SIGXCPU` and `SIGXFSZ` may be raised if you run out of resources,
* which can happen if your process, or the parent process that
* spawned your process, happened to call `setrlimit()`. Doing this is
* a wonderful idea.
*
* Using signals might make your C runtime slower. Upon successfully
* installing its first signal handling function, sigaction() will set
* the global variable `__interruptible` to true, to let everything else
* know that signals are in play. That way code which would otherwise be
* frequently calling sigprocmask() out of an abundance of caution, will
* no longer need to pay its outrageous cost.
*
* Signal handlers should avoid clobbering global variables like `errno`
* because most signals are asynchronous, i.e. the signal handler might
* be called at any assembly instruction. If something like a `SIGCHLD`
* handler doesn't save / restore the `errno` global when calling wait,
* then any i/o logic in the main program that checks `errno` will most
* likely break. This is rare in practice, since systems usually design
* signals to favor delivery from cancelation points before they block
* however that's not guaranteed.
*
* @return 0 on success or -1 w/ errno
* @see xsigaction() for a much better api
* @asyncsignalsafe
* @vforksafe
*/
int sigaction(int sig, const struct sigaction *act, struct sigaction *oldact) {
int rc;
if (sig == SIGKILL || sig == SIGSTOP) {
rc = einval();
} else {
rc = __sigaction(sig, act, oldact);
if (!rc && act && (uintptr_t)act->sa_handler >= kSigactionMinRva) {
static bool once;
if (!once) {
__interruptible = true;
once = true;
}
}
}
STRACE("sigaction(%G, %s, [%s]) → %d% m", sig, DescribeSigaction(0, act),
DescribeSigaction(rc, oldact), rc);
return rc;
}