cosmopolitan/libc/intrin/mman.greg.c
Justine Tunney 2ab9e9f7fd
Make improvements
- Introduce portable sched_getcpu() api
- Support GCC's __target_clones__ feature
- Make fma() go faster on x86 in default mode
- Remove some asan checks from core libraries
- WinMain() now ensures $HOME and $USER are defined
2024-02-12 10:23:00 -08:00

358 lines
15 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2020 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╠──────────────────────────────────────────────────────────────────────────────╣
│░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░│
│░░░░░░░█▀█░█▀█░▀█▀░█░█░█▀█░█░░░█░░░█░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░│
│░░░░░░░█▀█░█░▄░░█░░█░█░█▀█░█░░░█░░░▀█▀░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░│
│░░░░░░░▀░▀░▀▀▀░░▀░░▀▀▀░▀░▀░▀▀▀░▀▀▀░░▀░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░│
│░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░│
│░░░░░░░█▀█░█▀█░█▀█░▀█▀░█▀█░█▀█░█░░░█▀▀░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░│
│░░░░░░░█▀▀░█ █░██▀░░█░░█▀█░█▀█░█░░░█▀▀░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░│
│░░░░░░░▀░░░▀▀▀░▀░▀░░▀░░▀░▀░▀▀▀░▀▀▀░▀▀▀░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░│
│░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░│
│░░░░░░░█▀▀░█░█░█▀▀░█▀█░█░█░▀█▀░█▀█░█▀█░█░░█▀▀░░░░░░░░░░░░░░░░░░░░░░░░▄▄░░░▐█░░│
│░░░░░░░█▀▀░▄▀▄░█▀▀░█░▄░█░█░░█░░█▀█░█▀█░█░░█▀▀░░░░░░░░░░░░▄▄▄░░░▄██▄░░█▀░░░█░▄░│
│░░░░░░░▀▀▀░▀░▀░▀▀▀░▀▀▀░▀▀▀░░▀░░▀░▀░▀▀▀░▀▀░▀▀▀░░░░░░░░░░▄██▀█▌░██▄▄░░▐█▀▄░▐█▀░░│
│░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▐█▀▀▌░░░▄▀▌░▌░█░▌░░▌░▌░░│
╠──────────────────────────────────────────────────────▌▀▄─▐──▀▄─▐▄─▐▄▐▄─▐▄─▐▄─│
αcτµαlly pδrταblε εxεcµταblε § no-frills virtual memory management │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "ape/relocations.h"
#include "libc/assert.h"
#include "libc/elf/def.h"
#include "libc/elf/struct/phdr.h"
#include "libc/macros.internal.h"
#include "libc/nexgen32e/uart.internal.h"
#include "libc/runtime/e820.internal.h"
#include "libc/runtime/metalprintf.internal.h"
#include "libc/runtime/pc.internal.h"
#include "libc/runtime/runtime.h"
#ifdef __x86_64__
#define INVERT(x) (BANE + PHYSICAL((uintptr_t)(x)))
#define NOPAGE ((uint64_t) - 1)
#define APE_STACK_VADDR \
({ \
int64_t vAddr; \
__asm__(".weak\tape_stack_vaddr\n\t" \
"movabs\t$ape_stack_vaddr,%0" \
: "=r"(vAddr)); \
vAddr; \
})
struct ReclaimedPage {
uint64_t next;
};
/**
* @internal
* Allocates new page of physical memory.
*/
texthead uint64_t __new_page(struct mman *mm) {
uint64_t p = mm->frp;
if (p != NOPAGE) {
uint64_t q;
struct ReclaimedPage *rp = (struct ReclaimedPage *)(BANE + p);
unassert(p == (p & PAGE_TA));
q = rp->next;
unassert(q == (q & PAGE_TA) || q == NOPAGE);
mm->frp = q;
return p;
}
if (mm->pdpi == mm->e820n) {
return 0;
}
while (mm->pdp >= mm->e820[mm->pdpi].addr + mm->e820[mm->pdpi].size) {
if (++mm->pdpi == mm->e820n) return 0;
mm->pdp = MAX(mm->pdp, mm->e820[mm->pdpi].addr);
}
p = mm->pdp;
mm->pdp += 4096;
return p;
}
/**
* @internal
* Returns pointer to page table entry for page at virtual address.
* Additional page tables are allocated if needed as a side-effect.
*/
textreal uint64_t *__get_virtual(struct mman *mm, uint64_t *t, int64_t vaddr,
bool maketables) {
uint64_t *e, p;
unsigned char h;
for (h = 39;; h -= 9) {
e = t + ((vaddr >> h) & 511);
if (h == 12) return e;
if (!(*e & (PAGE_V | PAGE_RSRV))) {
if (!maketables) return NULL;
if (!(p = __new_page(mm))) return NULL;
__clear_page(BANE + p);
*e = p | PAGE_V | PAGE_RW;
}
t = (uint64_t *)(BANE + (*e & PAGE_TA));
}
}
/**
* @internal
* Sorts, rounds, and filters BIOS memory map.
*/
static textreal void __normalize_e820(struct mman *mm, uint64_t top) {
uint64_t a, b;
uint64_t x, y;
unsigned i, j, n;
for (n = i = 0; mm->e820[i].size; ++i) {
mm->e820[n] = mm->e820[i];
x = mm->e820[n].addr;
y = mm->e820[n].addr + mm->e820[n].size;
a = ROUNDUP(x, 4096);
b = ROUNDDOWN(y, 4096);
if (b > a && mm->e820[i].type == kMemoryUsable) {
b -= a;
mm->e820[n].addr = a;
mm->e820[n].size = b;
++n;
}
}
for (i = 1; i < n; ++i) {
for (j = i; j > 0 && mm->e820[i].addr < mm->e820[j - 1].addr; --j) {
mm->e820[j] = mm->e820[j - 1];
}
mm->e820[j] = mm->e820[i];
}
top = ROUNDUP(top, 4096);
mm->pdp = MAX(top, mm->e820[0].addr);
mm->pdpi = 0;
mm->e820n = n;
mm->frp = NOPAGE;
}
/**
* @internal
* Identity maps an area of physical memory to its negative address.
*/
textreal uint64_t *__invert_memory_area(struct mman *mm, uint64_t *pml4t,
uint64_t ps, uint64_t size,
uint64_t pte_flags) {
uint64_t pe = ps + size, p, *m = NULL;
ps = ROUNDDOWN(ps, 4096);
pe = ROUNDUP(pe, 4096);
for (p = ps; p != pe; p += 4096) {
m = __get_virtual(mm, pml4t, BANE + p, true);
if (m && !(*m & (PAGE_V | PAGE_RSRV))) {
*m = p | PAGE_V | PAGE_RSRV | pte_flags;
}
}
return m;
}
/**
* @internal
* Increments the reference count for a page of physical memory.
*/
void __ref_page(struct mman *mm, uint64_t *pml4t, uint64_t p) {
uint64_t *m, e;
m = __invert_memory_area(mm, pml4t, p, 4096, PAGE_RW | PAGE_XD);
if (m) {
e = *m;
if ((e & PAGE_REFC) != PAGE_REFC) {
e += PAGE_1REF;
*m = e;
}
}
}
/**
* @internal
* Increments the reference counts for an area of physical memory.
*/
void __ref_pages(struct mman *mm, uint64_t *pml4t, uint64_t ps, uint64_t size) {
uint64_t p = ROUNDDOWN(ps, 4096), e = ROUNDUP(ps + size, 4096);
while (p != e) {
__ref_page(mm, pml4t, p);
p += 4096;
}
}
/**
* @internal
* Reclaims a page of physical memory for later use.
*/
static void __reclaim_page(struct mman *mm, uint64_t p) {
struct ReclaimedPage *rp = (struct ReclaimedPage *)(BANE + p);
unassert(p == (p & PAGE_TA));
rp->next = mm->frp;
mm->frp = p;
}
/**
* @internal
* Decrements the reference count for a page of physical memory. Frees the
* page if there are no virtual addresses (excluding the negative space)
* referring to it.
*/
void __unref_page(struct mman *mm, uint64_t *pml4t, uint64_t p) {
uint64_t *m, e;
m = __invert_memory_area(mm, pml4t, p, 4096, PAGE_RW | PAGE_XD);
if (m) {
e = *m;
if ((e & PAGE_REFC) != PAGE_REFC) {
e -= PAGE_1REF;
*m = e;
if ((e & PAGE_REFC) == 0) __reclaim_page(mm, p);
}
}
}
/**
* @internal
* Identity maps all usable physical memory to its negative address.
*/
static textreal void __invert_memory(struct mman *mm, uint64_t *pml4t) {
uint64_t i;
for (i = 0; i < mm->e820n; ++i) {
uint64_t ps = mm->e820[i].addr, size = mm->e820[i].size;
/* ape/ape.S has already mapped the first 2 MiB of physical memory. */
if (ps < 0x200000 && ps + size <= 0x200000) continue;
__invert_memory_area(mm, pml4t, ps, size, PAGE_RW | PAGE_XD);
}
}
/**
* @internal
* Exports information about the offset of a field within a structure type,
* so that assembly language routines can use it. This macro can be invoked
* from inside a function whose code is known to be emitted.
*/
#define export_offsetof(type, member) \
do { \
asm volatile(".globl \"" #type "::" #member "\"\n\t" \
".set \"" #type "::" #member "\",%c0" \
: /* no outputs */ \
: "i"(offsetof(type, member))); \
} while (0)
textreal void __setup_mman(struct mman *mm, uint64_t *pml4t, uint64_t top) {
export_offsetof(struct mman, pc_drive_base_table);
export_offsetof(struct mman, pc_drive_last_sector);
export_offsetof(struct mman, pc_drive_last_head);
export_offsetof(struct mman, pc_drive);
export_offsetof(struct mman, e820);
export_offsetof(struct mman, e820_end);
export_offsetof(struct mman, bad_idt);
export_offsetof(struct mman, pc_drive_next_sector);
export_offsetof(struct mman, pc_drive_next_cylinder);
export_offsetof(struct mman, pc_drive_next_head);
export_offsetof(struct mman, pc_video_type);
export_offsetof(struct mman, pc_video_stride);
export_offsetof(struct mman, pc_video_width);
export_offsetof(struct mman, pc_video_height);
export_offsetof(struct mman, pc_video_framebuffer);
export_offsetof(struct mman, pc_video_framebuffer_size);
export_offsetof(struct mman, pc_video_curs_info);
export_offsetof(struct mman, pc_video_char_height);
__normalize_e820(mm, top);
__invert_memory(mm, pml4t);
}
static textreal uint64_t __map_phdr(struct mman *mm, uint64_t *pml4t,
uint64_t b, uint64_t m,
struct Elf64_Phdr *p) {
uint64_t i, f, v;
if (p->p_type != PT_LOAD) return m;
f = PAGE_RSRV | PAGE_U;
if (p->p_flags & PF_W)
f |= PAGE_V | PAGE_RW;
else if (p->p_flags & (PF_R | PF_X))
f |= PAGE_V;
if (!(p->p_flags & PF_X)) f |= PAGE_XD;
for (i = 0; i < p->p_memsz; i += 4096) {
if (i < p->p_filesz) {
v = b + p->p_offset + i;
m = MAX(m, v);
} else {
v = __clear_page(BANE + __new_page(mm));
}
*__get_virtual(mm, pml4t, p->p_vaddr + i, true) = (v & PAGE_TA) | f;
__ref_page(mm, pml4t, v & PAGE_TA);
}
return m;
}
/**
* @internal
* Maps APE-defined ELF program headers into memory and clears BSS.
*/
textreal void __map_phdrs(struct mman *mm, uint64_t *pml4t, uint64_t b,
uint64_t top) {
uint64_t m;
struct Elf64_Phdr *p;
extern char ape_phdrs[] __attribute__((__weak__));
extern char ape_phdrs_end[] __attribute__((__weak__));
extern char ape_stack_pf[] __attribute__((__weak__));
extern char ape_stack_offset[] __attribute__((__weak__));
extern char ape_stack_filesz[] __attribute__((__weak__));
extern char ape_stack_memsz[] __attribute__((__weak__));
__setup_mman(mm, pml4t, top);
for (p = (struct Elf64_Phdr *)INVERT(ape_phdrs), m = 0;
p < (struct Elf64_Phdr *)INVERT(ape_phdrs_end); ++p) {
m = __map_phdr(mm, pml4t, b, m, p);
}
m = __map_phdr(mm, pml4t, b, m,
&(struct Elf64_Phdr){
.p_type = PT_LOAD,
.p_flags = (uintptr_t)ape_stack_pf,
.p_offset = (uintptr_t)ape_stack_offset,
.p_vaddr = APE_STACK_VADDR,
.p_filesz = (uintptr_t)ape_stack_filesz,
.p_memsz = (uintptr_t)ape_stack_memsz,
});
mm->pdp = MAX(mm->pdp, m);
}
/**
* @internal
* Reclaims memory pages which were used at boot time but which can now be
* made available for the application.
*/
textreal void __reclaim_boot_pages(struct mman *mm, uint64_t skip_start,
uint64_t skip_end) {
uint64_t p = mm->frp, q = IMAGE_BASE_REAL, i, n = mm->e820n, b, e;
for (i = 0; i < n; ++i) {
b = mm->e820[i].addr;
if (b >= IMAGE_BASE_PHYSICAL) break;
e = MIN(IMAGE_BASE_PHYSICAL, b + mm->e820[i].size);
q = MAX(IMAGE_BASE_REAL, b);
while (q < e) {
struct ReclaimedPage *rp;
if (q == skip_start) {
q = skip_end;
if (q >= e) break;
}
rp = (struct ReclaimedPage *)(BANE + q);
rp->next = p;
p = q;
q += 4096;
}
}
mm->frp = p;
}
#endif /* __x86_64__ */