cosmopolitan/libc/tinymath/loglq.c
Justine Tunney 957c61cbbf
Release Cosmopolitan v3.3
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.

This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.

Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.

OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().

This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.

We no longer use hex constants to define math.h symbols like M_PI.
2024-02-20 13:27:59 -08:00

750 lines
32 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
│ vi: set noet ft=c ts=8 sw=8 fenc=utf-8 :vi │
╚──────────────────────────────────────────────────────────────────────────────╝
│ │
│ Copyright (c) 2007-2013 Bruce D. Evans │
│ All rights reserved. │
│ │
│ Redistribution and use in source and binary forms, with or without │
│ modification, are permitted provided that the following conditions │
│ are met: │
│ 1. Redistributions of source code must retain the above copyright │
│ notice unmodified, this list of conditions, and the following │
│ disclaimer. │
│ 2. Redistributions in binary form must reproduce the above copyright │
│ notice, this list of conditions and the following disclaimer in the │
│ documentation and/or other materials provided with the distribution. │
│ │
│ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR │
│ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES │
│ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. │
│ IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, │
│ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT │
│ NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, │
│ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY │
│ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT │
│ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF │
│ THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. │
│ │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/math.h"
#include "libc/tinymath/freebsd.internal.h"
__static_yoink("freebsd_libm_notice");
#if LDBL_MANT_DIG == 113
/**
* Implementation of the natural logarithm of x for 128-bit format.
*
* First decompose x into its base 2 representation:
*
* log(x) = log(X * 2**k), where X is in [1, 2)
* = log(X) + k * log(2).
*
* Let X = X_i + e, where X_i is the center of one of the intervals
* [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
* and X is in this interval. Then
*
* log(X) = log(X_i + e)
* = log(X_i * (1 + e / X_i))
* = log(X_i) + log(1 + e / X_i).
*
* The values log(X_i) are tabulated below. Let d = e / X_i and use
*
* log(1 + d) = p(d)
*
* where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
* suitably high degree.
*
* To get sufficiently small roundoff errors, k * log(2), log(X_i), and
* sometimes (if |k| is not large) the first term in p(d) must be evaluated
* and added up in extra precision. Extra precision is not needed for the
* rest of p(d). In the worst case when k = 0 and log(X_i) is 0, the final
* error is controlled mainly by the error in the second term in p(d). The
* error in this term itself is at most 0.5 ulps from the d*d operation in
* it. The error in this term relative to the first term is thus at most
* 0.5 * |-0.5| * |d| < 1.0/1024 ulps. We aim for an accumulated error of
* at most twice this at the point of the final rounding step. Thus the
* final error should be at most 0.5 + 1.0/512 = 0.5020 ulps. Exhaustive
* testing of a float variant of this function showed a maximum final error
* of 0.5008 ulps. Non-exhaustive testing of a double variant of this
* function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
*
* We made the maximum of |d| (and thus the total relative error and the
* degree of p(d)) small by using a large number of intervals. Using
* centers of intervals instead of endpoints reduces this maximum by a
* factor of 2 for a given number of intervals. p(d) is special only
* in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
* naturally. The most accurate minimax polynomial of a given degree might
* be different, but then we wouldn't want it since we would have to do
* extra work to avoid roundoff error (especially for P0*d instead of d).
*/
#ifndef NO_STRUCT_RETURN
#define STRUCT_RETURN
#endif
#if !defined(NO_UTAB) && !defined(NO_UTABL)
#define USE_UTAB
#endif
/*
* Domain [-0.005280, 0.004838], range ~[-1.1577e-37, 1.1582e-37]:
* |log(1 + d)/d - p(d)| < 2**-122.7
*/
static const long double
P2 = -0.5L,
P3 = 3.33333333333333333333333333333233795e-1L, /* 0x15555555555555555555555554d42.0p-114L */
P4 = -2.49999999999999999999999999941139296e-1L, /* -0x1ffffffffffffffffffffffdab14e.0p-115L */
P5 = 2.00000000000000000000000085468039943e-1L, /* 0x19999999999999999999a6d3567f4.0p-115L */
P6 = -1.66666666666666666666696142372698408e-1L, /* -0x15555555555555555567267a58e13.0p-115L */
P7 = 1.42857142857142857119522943477166120e-1L, /* 0x1249249249249248ed79a0ae434de.0p-115L */
P8 = -1.24999999999999994863289015033581301e-1L; /* -0x1fffffffffffffa13e91765e46140.0p-116L */
/* Double precision gives ~ 53 + log2(P9 * max(|d|)**8) ~= 120 bits. */
static const double
P9 = 1.1111111111111401e-1, /* 0x1c71c71c71c7ed.0p-56 */
P10 = -1.0000000000040135e-1, /* -0x199999999a0a92.0p-56 */
P11 = 9.0909090728136258e-2, /* 0x1745d173962111.0p-56 */
P12 = -8.3333318851855284e-2, /* -0x1555551722c7a3.0p-56 */
P13 = 7.6928634666404178e-2, /* 0x13b1985204a4ae.0p-56 */
P14 = -7.1626810078462499e-2; /* -0x12562276cdc5d0.0p-56 */
static volatile const double zero = 0;
#define INTERVALS 128
#define LOG2_INTERVALS 7
#define TSIZE (INTERVALS + 1)
#define G(i) (T[(i)].G)
#define F_hi(i) (T[(i)].F_hi)
#define F_lo(i) (T[(i)].F_lo)
#define ln2_hi F_hi(TSIZE - 1)
#define ln2_lo F_lo(TSIZE - 1)
#define E(i) (U[(i)].E)
#define H(i) (U[(i)].H)
static const struct {
float G; /* 1/(1 + i/128) rounded to 8/9 bits */
float F_hi; /* log(1 / G_i) rounded (see below) */
/* The compiler will insert 8 bytes of padding here. */
long double F_lo; /* next 113 bits for log(1 / G_i) */
} T[TSIZE] = {
/*
* ln2_hi and each F_hi(i) are rounded to a number of bits that
* makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
*
* The last entry (for X just below 2) is used to define ln2_hi
* and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
* with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
* This is needed for accuracy when x is just below 1. (To avoid
* special cases, such x are "reduced" strangely to X just below
* 2 and dk = -1, and then the exact cancellation is needed
* because any the error from any non-exactness would be too
* large).
*
* The relevant range of dk is [-16445, 16383]. The maximum number
* of bits in F_hi(i) that works is very dependent on i but has
* a minimum of 93. We only need about 12 bits in F_hi(i) for
* it to provide enough extra precision.
*
* We round F_hi(i) to 24 bits so that it can have type float,
* mainly to minimize the size of the table. Using all 24 bits
* in a float for it automatically satisfies the above constraints.
*/
{0x800000.0p-23, 0, 0},
{0xfe0000.0p-24, 0x8080ac.0p-30, -0x14ee431dae6674afa0c4bfe16e8fd.0p-144L},
{0xfc0000.0p-24, 0x8102b3.0p-29, -0x1db29ee2d83717be918e1119642ab.0p-144L},
{0xfa0000.0p-24, 0xc24929.0p-29, 0x1191957d173697cf302cc9476f561.0p-143L},
{0xf80000.0p-24, 0x820aec.0p-28, 0x13ce8888e02e78eba9b1113bc1c18.0p-142L},
{0xf60000.0p-24, 0xa33577.0p-28, -0x17a4382ce6eb7bfa509bec8da5f22.0p-142L},
{0xf48000.0p-24, 0xbc42cb.0p-28, -0x172a21161a107674986dcdca6709c.0p-143L},
{0xf30000.0p-24, 0xd57797.0p-28, -0x1e09de07cb958897a3ea46e84abb3.0p-142L},
{0xf10000.0p-24, 0xf7518e.0p-28, 0x1ae1eec1b036c484993c549c4bf40.0p-151L},
{0xef0000.0p-24, 0x8cb9df.0p-27, -0x1d7355325d560d9e9ab3d6ebab580.0p-141L},
{0xed8000.0p-24, 0x999ec0.0p-27, -0x1f9f02d256d5037108f4ec21e48cd.0p-142L},
{0xec0000.0p-24, 0xa6988b.0p-27, -0x16fc0a9d12c17a70f7a684c596b12.0p-143L},
{0xea0000.0p-24, 0xb80698.0p-27, 0x15d581c1e8da99ded322fb08b8462.0p-141L},
{0xe80000.0p-24, 0xc99af3.0p-27, -0x1535b3ba8f150ae09996d7bb4653e.0p-143L},
{0xe70000.0p-24, 0xd273b2.0p-27, 0x163786f5251aefe0ded34c8318f52.0p-145L},
{0xe50000.0p-24, 0xe442c0.0p-27, 0x1bc4b2368e32d56699c1799a244d4.0p-144L},
{0xe38000.0p-24, 0xf1b83f.0p-27, 0x1c6090f684e6766abceccab1d7174.0p-141L},
{0xe20000.0p-24, 0xff448a.0p-27, -0x1890aa69ac9f4215f93936b709efb.0p-142L},
{0xe08000.0p-24, 0x8673f6.0p-26, 0x1b9985194b6affd511b534b72a28e.0p-140L},
{0xdf0000.0p-24, 0x8d515c.0p-26, -0x1dc08d61c6ef1d9b2ef7e68680598.0p-143L},
{0xdd8000.0p-24, 0x943a9e.0p-26, -0x1f72a2dac729b3f46662238a9425a.0p-142L},
{0xdc0000.0p-24, 0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9691aed4d5e3df94.0p-140L},
{0xda8000.0p-24, 0xa2315d.0p-26, -0x11b26121629c46c186384993e1c93.0p-142L},
{0xd90000.0p-24, 0xa93f2f.0p-26, 0x1286d633e8e5697dc6a402a56fce1.0p-141L},
{0xd78000.0p-24, 0xb05988.0p-26, 0x16128eba9367707ebfa540e45350c.0p-144L},
{0xd60000.0p-24, 0xb78094.0p-26, 0x16ead577390d31ef0f4c9d43f79b2.0p-140L},
{0xd50000.0p-24, 0xbc4c6c.0p-26, 0x151131ccf7c7b75e7d900b521c48d.0p-141L},
{0xd38000.0p-24, 0xc3890a.0p-26, -0x115e2cd714bd06508aeb00d2ae3e9.0p-140L},
{0xd20000.0p-24, 0xcad2d7.0p-26, -0x1847f406ebd3af80485c2f409633c.0p-142L},
{0xd10000.0p-24, 0xcfb620.0p-26, 0x1c2259904d686581799fbce0b5f19.0p-141L},
{0xcf8000.0p-24, 0xd71653.0p-26, 0x1ece57a8d5ae54f550444ecf8b995.0p-140L},
{0xce0000.0p-24, 0xde843a.0p-26, -0x1f109d4bc4595412b5d2517aaac13.0p-141L},
{0xcd0000.0p-24, 0xe37fde.0p-26, 0x1bc03dc271a74d3a85b5b43c0e727.0p-141L},
{0xcb8000.0p-24, 0xeb050c.0p-26, -0x1bf2badc0df841a71b79dd5645b46.0p-145L},
{0xca0000.0p-24, 0xf29878.0p-26, -0x18efededd89fbe0bcfbe6d6db9f66.0p-147L},
{0xc90000.0p-24, 0xf7ad6f.0p-26, 0x1373ff977baa6911c7bafcb4d84fb.0p-141L},
{0xc80000.0p-24, 0xfcc8e3.0p-26, 0x196766f2fb328337cc050c6d83b22.0p-140L},
{0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e5fcf1a212e2a91e.0p-139L},
{0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f465e5ecab5f2a6f81.0p-139L},
{0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a0fe396f40f1dda9.0p-141L},
{0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de945a049a962e66c6.0p-139L},
{0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5147bdb6ddcaf59c425.0p-141L},
{0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba46bae9827221dc98.0p-139L},
{0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b730e28aba001a9b5e0.0p-140L},
{0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed72e23e13431adc4a5.0p-141L},
{0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7148e8d80caa10b7.0p-139L},
{0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c5663663d15faed7771.0p-139L},
{0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb2438273918db7df5c.0p-141L},
{0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698298adddd7f32686.0p-141L},
{0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123615b147a5d47bc208f.0p-142L},
{0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b263acb4351104631.0p-140L},
{0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a42423457e22d8c650b355.0p-139L},
{0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a465dc513b13f567d.0p-143L},
{0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770633947ffe651e7352f.0p-139L},
{0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b15228bfe8798d10ff0.0p-142L},
{0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f088b61a335f5b688c.0p-140L},
{0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad88e7d353e9967d548.0p-139L},
{0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf45de06ecebfaf6d.0p-139L},
{0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab904864092b34edda19a831e.0p-140L},
{0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333221d8a9b475a6ba.0p-139L},
{0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fbfe24b633f4e8d84d.0p-140L},
{0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c89c45003fc5d7807.0p-140L},
{0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8002f2449e174504.0p-139L},
{0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a8717d5626e16acc7d.0p-141L},
{0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3ca87dabf351aa41f4.0p-139L},
{0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d79f51dcc73014c9.0p-141L},
{0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac42d1bf9199188e7.0p-141L},
{0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549dd1160bcc45c7e2c.0p-139L},
{0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b610665377f15625b6.0p-140L},
{0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a2d1b2176010478be.0p-140L},
{0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f0c95dd83626d7333.0p-142L},
{0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b67ccb006a5b9890ea.0p-140L},
{0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f56db28da4d629d00a.0p-140L},
{0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d8f4d60c713346641.0p-140L},
{0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d3b3d406b6cbf3ce5.0p-140L},
{0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd73692609040ccc2.0p-139L},
{0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f7301901b8ad85c25afd09.0p-139L},
{0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cc8a4dfb804de6867.0p-140L},
{0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d42f78d3e65d3727.0p-141L},
{0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af269647b783d88999.0p-139L},
{0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e063714615f7cc91d.0p-144L},
{0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade02951686d5373aec.0p-139L},
{0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1649349630531502.0p-139L},
{0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c5320619fb9433d841.0p-139L},
{0x9a8000.0p-24, 0x814697.0p-24, -0x12ad3817004f3f0bdff99f932b273.0p-138L},
{0x9a0000.0p-24, 0x821b06.0p-24, -0x189fc53117f9e54e78103a2bc1767.0p-141L},
{0x990000.0p-24, 0x83c5f8.0p-24, 0x14cf15a048907b7d7f47ddb45c5a3.0p-139L},
{0x988000.0p-24, 0x849c7d.0p-24, 0x1cbb1d35fb82873b04a9af1dd692c.0p-138L},
{0x978000.0p-24, 0x864ba6.0p-24, 0x1128639b814f9b9770d8cb6573540.0p-138L},
{0x970000.0p-24, 0x87244c.0p-24, 0x184733853300f002e836dfd47bd41.0p-139L},
{0x968000.0p-24, 0x87fdaa.0p-24, 0x109d23aef77dd5cd7cc94306fb3ff.0p-140L},
{0x958000.0p-24, 0x89b293.0p-24, -0x1a81ef367a59de2b41eeebd550702.0p-138L},
{0x950000.0p-24, 0x8a8e20.0p-24, -0x121ad3dbb2f45275c917a30df4ac9.0p-138L},
{0x948000.0p-24, 0x8b6a6a.0p-24, -0x1cfb981628af71a89df4e6df2e93b.0p-139L},
{0x938000.0p-24, 0x8d253a.0p-24, -0x1d21730ea76cfdec367828734cae5.0p-139L},
{0x930000.0p-24, 0x8e03c2.0p-24, 0x135cc00e566f76b87333891e0dec4.0p-138L},
{0x928000.0p-24, 0x8ee30d.0p-24, -0x10fcb5df257a263e3bf446c6e3f69.0p-140L},
{0x918000.0p-24, 0x90a3ee.0p-24, -0x16e171b15433d723a4c7380a448d8.0p-139L},
{0x910000.0p-24, 0x918587.0p-24, -0x1d050da07f3236f330972da2a7a87.0p-139L},
{0x908000.0p-24, 0x9267e7.0p-24, 0x1be03669a5268d21148c6002becd3.0p-139L},
{0x8f8000.0p-24, 0x942f04.0p-24, 0x10b28e0e26c336af90e00533323ba.0p-139L},
{0x8f0000.0p-24, 0x9513c3.0p-24, 0x1a1d820da57cf2f105a89060046aa.0p-138L},
{0x8e8000.0p-24, 0x95f950.0p-24, -0x19ef8f13ae3cf162409d8ea99d4c0.0p-139L},
{0x8e0000.0p-24, 0x96dfab.0p-24, -0x109e417a6e507b9dc10dac743ad7a.0p-138L},
{0x8d0000.0p-24, 0x98aed2.0p-24, 0x10d01a2c5b0e97c4990b23d9ac1f5.0p-139L},
{0x8c8000.0p-24, 0x9997a2.0p-24, -0x1d6a50d4b61ea74540bdd2aa99a42.0p-138L},
{0x8c0000.0p-24, 0x9a8145.0p-24, 0x1b3b190b83f9527e6aba8f2d783c1.0p-138L},
{0x8b8000.0p-24, 0x9b6bbf.0p-24, 0x13a69fad7e7abe7ba81c664c107e0.0p-138L},
{0x8b0000.0p-24, 0x9c5711.0p-24, -0x11cd12316f576aad348ae79867223.0p-138L},
{0x8a8000.0p-24, 0x9d433b.0p-24, 0x1c95c444b807a246726b304ccae56.0p-139L},
{0x898000.0p-24, 0x9f1e22.0p-24, -0x1b9c224ea698c2f9b47466d6123fe.0p-139L},
{0x890000.0p-24, 0xa00ce1.0p-24, 0x125ca93186cf0f38b4619a2483399.0p-141L},
{0x888000.0p-24, 0xa0fc80.0p-24, -0x1ee38a7bc228b3597043be78eaf49.0p-139L},
{0x880000.0p-24, 0xa1ed00.0p-24, -0x1a0db876613d204147dc69a07a649.0p-138L},
{0x878000.0p-24, 0xa2de62.0p-24, 0x193224e8516c008d3602a7b41c6e8.0p-139L},
{0x870000.0p-24, 0xa3d0a9.0p-24, 0x1fa28b4d2541aca7d5844606b2421.0p-139L},
{0x868000.0p-24, 0xa4c3d6.0p-24, 0x1c1b5760fb4571acbcfb03f16daf4.0p-138L},
{0x858000.0p-24, 0xa6acea.0p-24, 0x1fed5d0f65949c0a345ad743ae1ae.0p-140L},
{0x850000.0p-24, 0xa7a2d4.0p-24, 0x1ad270c9d749362382a7688479e24.0p-140L},
{0x848000.0p-24, 0xa899ab.0p-24, 0x199ff15ce532661ea9643a3a2d378.0p-139L},
{0x840000.0p-24, 0xa99171.0p-24, 0x1a19e15ccc45d257530a682b80490.0p-139L},
{0x838000.0p-24, 0xaa8a28.0p-24, -0x121a14ec532b35ba3e1f868fd0b5e.0p-140L},
{0x830000.0p-24, 0xab83d1.0p-24, 0x1aee319980bff3303dd481779df69.0p-139L},
{0x828000.0p-24, 0xac7e6f.0p-24, -0x18ffd9e3900345a85d2d86161742e.0p-140L},
{0x820000.0p-24, 0xad7a03.0p-24, -0x1e4db102ce29f79b026b64b42caa1.0p-140L},
{0x818000.0p-24, 0xae768f.0p-24, 0x17c35c55a04a82ab19f77652d977a.0p-141L},
{0x810000.0p-24, 0xaf7415.0p-24, 0x1448324047019b48d7b98c1cf7234.0p-138L},
{0x808000.0p-24, 0xb07298.0p-24, -0x1750ee3915a197e9c7359dd94152f.0p-138L},
{0x800000.0p-24, 0xb17218.0p-24, -0x105c610ca86c3898cff81a12a17e2.0p-141L},
};
#ifdef USE_UTAB
static const struct {
float H; /* 1 + i/INTERVALS (exact) */
float E; /* H(i) * G(i) - 1 (exact) */
} U[TSIZE] = {
{0x800000.0p-23, 0},
{0x810000.0p-23, -0x800000.0p-37},
{0x820000.0p-23, -0x800000.0p-35},
{0x830000.0p-23, -0x900000.0p-34},
{0x840000.0p-23, -0x800000.0p-33},
{0x850000.0p-23, -0xc80000.0p-33},
{0x860000.0p-23, -0xa00000.0p-36},
{0x870000.0p-23, 0x940000.0p-33},
{0x880000.0p-23, 0x800000.0p-35},
{0x890000.0p-23, -0xc80000.0p-34},
{0x8a0000.0p-23, 0xe00000.0p-36},
{0x8b0000.0p-23, 0x900000.0p-33},
{0x8c0000.0p-23, -0x800000.0p-35},
{0x8d0000.0p-23, -0xe00000.0p-33},
{0x8e0000.0p-23, 0x880000.0p-33},
{0x8f0000.0p-23, -0xa80000.0p-34},
{0x900000.0p-23, -0x800000.0p-35},
{0x910000.0p-23, 0x800000.0p-37},
{0x920000.0p-23, 0x900000.0p-35},
{0x930000.0p-23, 0xd00000.0p-35},
{0x940000.0p-23, 0xe00000.0p-35},
{0x950000.0p-23, 0xc00000.0p-35},
{0x960000.0p-23, 0xe00000.0p-36},
{0x970000.0p-23, -0x800000.0p-38},
{0x980000.0p-23, -0xc00000.0p-35},
{0x990000.0p-23, -0xd00000.0p-34},
{0x9a0000.0p-23, 0x880000.0p-33},
{0x9b0000.0p-23, 0xe80000.0p-35},
{0x9c0000.0p-23, -0x800000.0p-35},
{0x9d0000.0p-23, 0xb40000.0p-33},
{0x9e0000.0p-23, 0x880000.0p-34},
{0x9f0000.0p-23, -0xe00000.0p-35},
{0xa00000.0p-23, 0x800000.0p-33},
{0xa10000.0p-23, -0x900000.0p-36},
{0xa20000.0p-23, -0xb00000.0p-33},
{0xa30000.0p-23, -0xa00000.0p-36},
{0xa40000.0p-23, 0x800000.0p-33},
{0xa50000.0p-23, -0xf80000.0p-35},
{0xa60000.0p-23, 0x880000.0p-34},
{0xa70000.0p-23, -0x900000.0p-33},
{0xa80000.0p-23, -0x800000.0p-35},
{0xa90000.0p-23, 0x900000.0p-34},
{0xaa0000.0p-23, 0xa80000.0p-33},
{0xab0000.0p-23, -0xac0000.0p-34},
{0xac0000.0p-23, -0x800000.0p-37},
{0xad0000.0p-23, 0xf80000.0p-35},
{0xae0000.0p-23, 0xf80000.0p-34},
{0xaf0000.0p-23, -0xac0000.0p-33},
{0xb00000.0p-23, -0x800000.0p-33},
{0xb10000.0p-23, -0xb80000.0p-34},
{0xb20000.0p-23, -0x800000.0p-34},
{0xb30000.0p-23, -0xb00000.0p-35},
{0xb40000.0p-23, -0x800000.0p-35},
{0xb50000.0p-23, -0xe00000.0p-36},
{0xb60000.0p-23, -0x800000.0p-35},
{0xb70000.0p-23, -0xb00000.0p-35},
{0xb80000.0p-23, -0x800000.0p-34},
{0xb90000.0p-23, -0xb80000.0p-34},
{0xba0000.0p-23, -0x800000.0p-33},
{0xbb0000.0p-23, -0xac0000.0p-33},
{0xbc0000.0p-23, 0x980000.0p-33},
{0xbd0000.0p-23, 0xbc0000.0p-34},
{0xbe0000.0p-23, 0xe00000.0p-36},
{0xbf0000.0p-23, -0xb80000.0p-35},
{0xc00000.0p-23, -0x800000.0p-33},
{0xc10000.0p-23, 0xa80000.0p-33},
{0xc20000.0p-23, 0x900000.0p-34},
{0xc30000.0p-23, -0x800000.0p-35},
{0xc40000.0p-23, -0x900000.0p-33},
{0xc50000.0p-23, 0x820000.0p-33},
{0xc60000.0p-23, 0x800000.0p-38},
{0xc70000.0p-23, -0x820000.0p-33},
{0xc80000.0p-23, 0x800000.0p-33},
{0xc90000.0p-23, -0xa00000.0p-36},
{0xca0000.0p-23, -0xb00000.0p-33},
{0xcb0000.0p-23, 0x840000.0p-34},
{0xcc0000.0p-23, -0xd00000.0p-34},
{0xcd0000.0p-23, 0x800000.0p-33},
{0xce0000.0p-23, -0xe00000.0p-35},
{0xcf0000.0p-23, 0xa60000.0p-33},
{0xd00000.0p-23, -0x800000.0p-35},
{0xd10000.0p-23, 0xb40000.0p-33},
{0xd20000.0p-23, -0x800000.0p-35},
{0xd30000.0p-23, 0xaa0000.0p-33},
{0xd40000.0p-23, -0xe00000.0p-35},
{0xd50000.0p-23, 0x880000.0p-33},
{0xd60000.0p-23, -0xd00000.0p-34},
{0xd70000.0p-23, 0x9c0000.0p-34},
{0xd80000.0p-23, -0xb00000.0p-33},
{0xd90000.0p-23, -0x800000.0p-38},
{0xda0000.0p-23, 0xa40000.0p-33},
{0xdb0000.0p-23, -0xdc0000.0p-34},
{0xdc0000.0p-23, 0xc00000.0p-35},
{0xdd0000.0p-23, 0xca0000.0p-33},
{0xde0000.0p-23, -0xb80000.0p-34},
{0xdf0000.0p-23, 0xd00000.0p-35},
{0xe00000.0p-23, 0xc00000.0p-33},
{0xe10000.0p-23, -0xf40000.0p-34},
{0xe20000.0p-23, 0x800000.0p-37},
{0xe30000.0p-23, 0x860000.0p-33},
{0xe40000.0p-23, -0xc80000.0p-33},
{0xe50000.0p-23, -0xa80000.0p-34},
{0xe60000.0p-23, 0xe00000.0p-36},
{0xe70000.0p-23, 0x880000.0p-33},
{0xe80000.0p-23, -0xe00000.0p-33},
{0xe90000.0p-23, -0xfc0000.0p-34},
{0xea0000.0p-23, -0x800000.0p-35},
{0xeb0000.0p-23, 0xe80000.0p-35},
{0xec0000.0p-23, 0x900000.0p-33},
{0xed0000.0p-23, 0xe20000.0p-33},
{0xee0000.0p-23, -0xac0000.0p-33},
{0xef0000.0p-23, -0xc80000.0p-34},
{0xf00000.0p-23, -0x800000.0p-35},
{0xf10000.0p-23, 0x800000.0p-35},
{0xf20000.0p-23, 0xb80000.0p-34},
{0xf30000.0p-23, 0x940000.0p-33},
{0xf40000.0p-23, 0xc80000.0p-33},
{0xf50000.0p-23, -0xf20000.0p-33},
{0xf60000.0p-23, -0xc80000.0p-33},
{0xf70000.0p-23, -0xa20000.0p-33},
{0xf80000.0p-23, -0x800000.0p-33},
{0xf90000.0p-23, -0xc40000.0p-34},
{0xfa0000.0p-23, -0x900000.0p-34},
{0xfb0000.0p-23, -0xc80000.0p-35},
{0xfc0000.0p-23, -0x800000.0p-35},
{0xfd0000.0p-23, -0x900000.0p-36},
{0xfe0000.0p-23, -0x800000.0p-37},
{0xff0000.0p-23, -0x800000.0p-39},
{0x800000.0p-22, 0},
};
#endif /* USE_UTAB */
#ifdef STRUCT_RETURN
#define RETURN1(rp, v) do { \
(rp)->hi = (v); \
(rp)->lo_set = 0; \
return; \
} while (0)
#define RETURN2(rp, h, l) do { \
(rp)->hi = (h); \
(rp)->lo = (l); \
(rp)->lo_set = 1; \
return; \
} while (0)
struct ld {
long double hi;
long double lo;
int lo_set;
};
#else
#define RETURN1(rp, v) RETURNF(v)
#define RETURN2(rp, h, l) RETURNI((h) + (l))
#endif
#ifdef STRUCT_RETURN
forceinline void
k_logl(long double x, struct ld *rp)
#else
long double
logl(long double x)
#endif
{
long double d, val_hi, val_lo;
double dd, dk;
uint64_t lx, llx;
int i, k;
uint16_t hx;
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
k = -16383;
#if 0 /* Hard to do efficiently. Don't do it until we support all modes. */
if (x == 1)
RETURN1(rp, 0); /* log(1) = +0 in all rounding modes */
#endif
if (hx == 0 || hx >= 0x8000) { /* zero, negative or subnormal? */
if (((hx & 0x7fff) | lx | llx) == 0)
RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */
if (hx != 0)
/* log(neg or NaN) = qNaN: */
RETURN1(rp, (x - x) / zero);
x *= 0x1.0p113; /* subnormal; scale up x */
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
k = -16383 - 113;
} else if (hx >= 0x7fff)
RETURN1(rp, x + x); /* log(Inf or NaN) = Inf or qNaN */
#ifndef STRUCT_RETURN
ENTERI();
#endif
k += hx;
dk = k;
/* Scale x to be in [1, 2). */
SET_LDBL_EXPSIGN(x, 0x3fff);
/* 0 <= i <= INTERVALS: */
#define L2I (49 - LOG2_INTERVALS)
i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
/*
* -0.005280 < d < 0.004838. In particular, the infinite-
* precision |d| is <= 2**-7. Rounding of G(i) to 8 bits
* ensures that d is representable without extra precision for
* this bound on |d| (since when this calculation is expressed
* as x*G(i)-1, the multiplication needs as many extra bits as
* G(i) has and the subtraction cancels 8 bits). But for
* most i (107 cases out of 129), the infinite-precision |d|
* is <= 2**-8. G(i) is rounded to 9 bits for such i to give
* better accuracy (this works by improving the bound on |d|,
* which in turn allows rounding to 9 bits in more cases).
* This is only important when the original x is near 1 -- it
* lets us avoid using a special method to give the desired
* accuracy for such x.
*/
if (0)
d = x * G(i) - 1;
else {
#ifdef USE_UTAB
d = (x - H(i)) * G(i) + E(i);
#else
long double x_hi;
double x_lo;
/*
* Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
* G(i) has at most 9 bits, so the splitting point is not
* critical.
*/
INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
llx & 0xffffffffff000000ULL);
x_lo = x - x_hi;
d = x_hi * G(i) - 1 + x_lo * G(i);
#endif
}
/*
* Our algorithm depends on exact cancellation of F_lo(i) and
* F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
* at the end of the table. This and other technical complications
* make it difficult to avoid the double scaling in (dk*ln2) *
* log(base) for base != e without losing more accuracy and/or
* efficiency than is gained.
*/
/*
* Use double precision operations wherever possible, since
* long double operations are emulated and were very slow on
* the old sparc64 and unknown on the newer aarch64 and riscv
* machines. Also, don't try to improve parallelism by
* increasing the number of operations, since any parallelism
* on such machines is needed for the emulation. Horner's
* method is good for this, and is also good for accuracy.
* Horner's method doesn't handle the `lo' term well, either
* for efficiency or accuracy. However, for accuracy we
* evaluate d * d * P2 separately to take advantage of by P2
* being exact, and this gives a good place to sum the 'lo'
* term too.
*/
dd = (double)d;
val_lo = d * d * d * (P3 +
d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo) + d * d * P2;
val_hi = d;
#ifdef DEBUG
if (fetestexcept(FE_UNDERFLOW))
breakpoint();
#endif
_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
RETURN2(rp, val_hi, val_lo);
}
/**
* Returns log(𝟷+𝑥).
*/
long double
log1pl(long double x)
{
long double d, d_hi, f_lo, val_hi, val_lo;
long double f_hi, twopminusk;
double d_lo, dd, dk;
uint64_t lx, llx;
int i, k;
int16_t ax, hx;
DOPRINT_START(&x);
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
if (hx < 0x3fff) { /* x < 1, or x neg NaN */
ax = hx & 0x7fff;
if (ax >= 0x3fff) { /* x <= -1, or x neg NaN */
if (ax == 0x3fff && (lx | llx) == 0)
RETURNP(-1 / zero); /* log1p(-1) = -Inf */
/* log1p(x < 1, or x NaN) = qNaN: */
RETURNP((x - x) / (x - x));
}
if (ax <= 0x3f8d) { /* |x| < 2**-113 */
if ((int)x == 0)
RETURNP(x); /* x with inexact if x != 0 */
}
f_hi = 1;
f_lo = x;
} else if (hx >= 0x7fff) { /* x +Inf or non-neg NaN */
RETURNP(x + x); /* log1p(Inf or NaN) = Inf or qNaN */
} else if (hx < 0x40e1) { /* 1 <= x < 2**226 */
f_hi = x;
f_lo = 1;
} else { /* 2**226 <= x < +Inf */
f_hi = x;
f_lo = 0; /* avoid underflow of the P3 term */
}
ENTERI();
x = f_hi + f_lo;
f_lo = (f_hi - x) + f_lo;
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
k = -16383;
k += hx;
dk = k;
SET_LDBL_EXPSIGN(x, 0x3fff);
twopminusk = 1;
SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
f_lo *= twopminusk;
i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
/*
* x*G(i)-1 (with a reduced x) can be represented exactly, as
* above, but now we need to evaluate the polynomial on d =
* (x+f_lo)*G(i)-1 and extra precision is needed for that.
* Since x+x_lo is a hi+lo decomposition and subtracting 1
* doesn't lose too many bits, an inexact calculation for
* f_lo*G(i) is good enough.
*/
if (0)
d_hi = x * G(i) - 1;
else {
#ifdef USE_UTAB
d_hi = (x - H(i)) * G(i) + E(i);
#else
long double x_hi;
double x_lo;
INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
llx & 0xffffffffff000000ULL);
x_lo = x - x_hi;
d_hi = x_hi * G(i) - 1 + x_lo * G(i);
#endif
}
d_lo = f_lo * G(i);
/*
* This is _2sumF(d_hi, d_lo) inlined. The condition
* (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
* always satisifed, so it is not clear that this works, but
* it works in practice. It works even if it gives a wrong
* normalized d_lo, since |d_lo| > |d_hi| implies that i is
* nonzero and d is tiny, so the F(i) term dominates d_lo.
* In float precision:
* (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
* And if d is only a little tinier than that, we would have
* another underflow problem for the P3 term; this is also ruled
* out by exhaustive testing.)
*/
d = d_hi + d_lo;
d_lo = d_hi - d + d_lo;
d_hi = d;
dd = (double)d;
val_lo = d * d * d * (P3 +
d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo + d_lo) + d * d * P2;
val_hi = d_hi;
#ifdef DEBUG
if (fetestexcept(FE_UNDERFLOW))
breakpoint();
#endif
_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
RETURN2PI(val_hi, val_lo);
}
#ifdef STRUCT_RETURN
/**
* Returns natural logarithm of 𝑥.
*/
long double
logl(long double x)
{
struct ld r;
ENTERI();
DOPRINT_START(&x);
k_logl(x, &r);
RETURNSPI(&r);
}
/*
* 29+113 bit decompositions. The bits are distributed so that the products
* of the hi terms are exact in double precision. The types are chosen so
* that the products of the hi terms are done in at least double precision,
* without any explicit conversions. More natural choices would require a
* slow long double precision multiplication.
*/
static const double
invln10_hi = 4.3429448176175356e-1, /* 0x1bcb7b15000000.0p-54 */
invln2_hi = 1.4426950402557850e0; /* 0x17154765000000.0p-52 */
static const long double
invln10_lo = 1.41498268538580090791605082294397000e-10L, /* 0x137287195355baaafad33dc323ee3.0p-145L */
invln2_lo = 6.33178418956604368501892137426645911e-10L, /* 0x15c17f0bbbe87fed0691d3e88eb57.0p-143L */
invln10_lo_plus_hi = invln10_lo + invln10_hi,
invln2_lo_plus_hi = invln2_lo + invln2_hi;
/**
* Calculates log₁₀𝑥.
*/
long double
log10l(long double x)
{
struct ld r;
long double hi, lo;
ENTERI();
DOPRINT_START(&x);
k_logl(x, &r);
if (!r.lo_set)
RETURNPI(r.hi);
_2sumF(r.hi, r.lo);
hi = (float)r.hi;
lo = r.lo + (r.hi - hi);
RETURN2PI(invln10_hi * hi,
invln10_lo_plus_hi * lo + invln10_lo * hi);
}
/**
* Calculates log₂𝑥.
*/
long double
log2l(long double x)
{
struct ld r;
long double hi, lo;
ENTERI();
DOPRINT_START(&x);
k_logl(x, &r);
if (!r.lo_set)
RETURNPI(r.hi);
_2sumF(r.hi, r.lo);
hi = (float)r.hi;
lo = r.lo + (r.hi - hi);
RETURN2PI(invln2_hi * hi,
invln2_lo_plus_hi * lo + invln2_lo * hi);
}
#endif /* STRUCT_RETURN */
#endif /* LDBL_MANT_DIG == 113 */