cosmopolitan/libc/thread/pthread_cancel.c
Jōshin 6e6fc38935
Apply clang-format update to repo (#1154)
Commit bc6c183 introduced a bunch of discrepancies between what files
look like in the repo and what clang-format says they should look like.
However, there were already a few discrepancies prior to that. Most of
these discrepancies seemed to be unintentional, but a few of them were
load-bearing (e.g., a #include that violated header ordering needing
something to have been #defined by a 'later' #include.)

I opted to take what I hope is a relatively smooth-brained approach: I
reverted the .clang-format change, ran clang-format on the whole repo,
reapplied the .clang-format change, reran clang-format again, and then
reverted the commit that contained the first run. Thus the full effect
of this PR should only be to apply the changed formatting rules to the
repo, and from skimming the results, this seems to be the case.

My work can be checked by applying the short, manual commits, and then
rerunning the command listed in the autogenerated commits (those whose
messages I have prefixed auto:) and seeing if your results agree.

It might be that the other diffs should be fixed at some point but I'm
leaving that aside for now.

fd '\.c(c|pp)?$' --print0| xargs -0 clang-format -i
2024-04-25 10:38:00 -07:00

422 lines
14 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2022 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/assert.h"
#include "libc/atomic.h"
#include "libc/calls/calls.h"
#include "libc/calls/struct/sigaction.h"
#include "libc/calls/struct/siginfo.h"
#include "libc/calls/struct/sigset.h"
#include "libc/calls/struct/ucontext-freebsd.internal.h"
#include "libc/calls/struct/ucontext.internal.h"
#include "libc/calls/ucontext.h"
#include "libc/cosmo.h"
#include "libc/dce.h"
#include "libc/errno.h"
#include "libc/intrin/atomic.h"
#include "libc/intrin/describeflags.internal.h"
#include "libc/intrin/kprintf.h"
#include "libc/intrin/strace.internal.h"
#include "libc/str/str.h"
#include "libc/sysv/consts/sa.h"
#include "libc/sysv/consts/sig.h"
#include "libc/sysv/errfuns.h"
#include "libc/thread/posixthread.internal.h"
#include "libc/thread/thread.h"
#include "libc/thread/tls.h"
int systemfive_cancel(void);
extern const char systemfive_cancellable[];
extern const char systemfive_cancellable_end[];
long _pthread_cancel_ack(void) {
struct PosixThread *pt;
STRACE("_pthread_cancel_ack()");
pt = _pthread_self();
if (!(pt->pt_flags & (PT_NOCANCEL | PT_MASKED)) ||
(pt->pt_flags & PT_ASYNC)) {
pthread_exit(PTHREAD_CANCELED);
}
pt->pt_flags |= PT_NOCANCEL;
if (IsOpenbsd()) {
pt->pt_flags |= PT_OPENBSD_KLUDGE;
}
return ecanceled();
}
// the purpose of this routine is to force a blocking system call to end
static void _pthread_cancel_sig(int sig, siginfo_t *si, void *arg) {
ucontext_t *ctx = arg;
// check thread runtime state is initialized and cancelled
struct PosixThread *pt;
if (!__tls_enabled)
return;
if (!(pt = _pthread_self()))
return;
if (pt->pt_flags & PT_NOCANCEL)
return;
if (!atomic_load_explicit(&pt->pt_canceled, memory_order_acquire))
return;
// in asynchronous mode the asynchronous signal calls exit
if (pt->pt_flags & PT_ASYNC) {
sigaddset(&ctx->uc_sigmask, SIGTHR);
pthread_sigmask(SIG_SETMASK, &ctx->uc_sigmask, 0);
pthread_exit(PTHREAD_CANCELED);
}
// prevent this handler from being called again by thread
sigaddset(&ctx->uc_sigmask, SIGTHR);
// check for race condition between pre-check and syscall
// rewrite the thread's execution state to acknowledge it
// sadly windows isn't able to be sophisticated like this
if (!IsWindows()) {
if (systemfive_cancellable <= (char *)ctx->uc_mcontext.PC &&
(char *)ctx->uc_mcontext.PC < systemfive_cancellable_end) {
ctx->uc_mcontext.PC = (intptr_t)systemfive_cancel;
return;
}
}
// punts cancelation to start of next cancellation point
// we ensure sigthr is a pending signal in case unblocked
raise(sig);
}
static void _pthread_cancel_listen(void) {
struct sigaction sa = {
.sa_mask = -1,
.sa_flags = SA_SIGINFO,
.sa_sigaction = _pthread_cancel_sig,
};
sigaction(SIGTHR, &sa, 0);
}
static errno_t _pthread_cancel_single(struct PosixThread *pt) {
// install our special signal handler
static atomic_uint once;
cosmo_once(&once, _pthread_cancel_listen);
// check if thread is already dead
// we don't care about any further esrch checks upstream
switch (atomic_load_explicit(&pt->pt_status, memory_order_acquire)) {
case kPosixThreadZombie:
case kPosixThreadTerminated:
return ESRCH;
default:
break;
}
// erase this thread from the book of life
atomic_store_explicit(&pt->pt_canceled, 1, memory_order_release);
// does this thread want to cancel itself? just exit
if (pt == _pthread_self()) {
if (!(pt->pt_flags & (PT_NOCANCEL | PT_MASKED)) &&
(pt->pt_flags & PT_ASYNC)) {
pthread_exit(PTHREAD_CANCELED);
}
return 0;
}
// send the cancelation signal
errno_t err;
err = pthread_kill((pthread_t)pt, SIGTHR);
if (err == ESRCH)
err = 0;
return err;
}
static errno_t _pthread_cancel_everyone(void) {
errno_t err;
struct Dll *e;
struct PosixThread *other;
err = ESRCH;
_pthread_lock();
for (e = dll_first(_pthread_list); e; e = dll_next(_pthread_list, e)) {
other = POSIXTHREAD_CONTAINER(e);
if (other != _pthread_self() &&
atomic_load_explicit(&other->pt_status, memory_order_acquire) <
kPosixThreadTerminated) {
_pthread_cancel_single(other);
err = 0;
}
}
_pthread_unlock();
return err;
}
/**
* Cancels thread.
*
* When a thread is cancelled, it'll interrupt blocking i/o calls,
* invoke any cleanup handlers that were pushed on the thread's stack
* before the cancelation occurred, in addition to destructing pthread
* keys, before finally, the thread shall abruptly exit.
*
* By default, pthread_cancel() can only take effect when a thread
* reaches a cancelation point. Such functions are documented with
* `@cancelationpoint`. They check the cancellation state before the
* underlying system call is issued. If the system call is issued and
* blocks, then pthread_cancel() will interrupt the operation in which
* case the syscall wrapper will check the cancelled state a second
* time, only if the raw system call returned EINTR.
*
* The following system calls are implemented as cancelation points.
*
* - `accept4`
* - `accept`
* - `clock_nanosleep`
* - `connect`
* - `copy_file_range`
* - `creat`
* - `epoll_wait`
* - `fcntl(F_OFD_SETLKW)`
* - `fcntl(F_SETLKW)`
* - `fdatasync`
* - `flock`
* - `fstatfs`
* - `fsync`
* - `ftruncate`
* - `getrandom`
* - `msync`
* - `nanosleep`
* - `open`
* - `openat`
* - `pause`
* - `poll`
* - `ppoll`
* - `pread`
* - `preadv`
* - `pselect`
* - `pwrite`
* - `pwritev`
* - `read`
* - `readv`
* - `recvfrom`
* - `recvmsg`
* - `select`
* - `sendmsg`
* - `sendto`
* - `sigsuspend`
* - `sigtimedwait`
* - `sigwaitinfo`
* - `statfs`
* - `tcdrain`
* - `truncate`
* - `wait3`
* - `wait4`
* - `wait`
* - `waitpid`
* - `write`
* - `writev`
*
* The following library calls are implemented as cancelation points.
*
* - `fopen`
* - `gzopen`, `gzread`, `gzwrite`, etc.
* - `lockf(F_LOCK)`
* - `nsync_cv_wait_with_deadline`
* - `nsync_cv_wait`
* - `opendir`
* - `openatemp`, 'mkstemp', etc.
* - `sleep`, `usleep`, `nanosleep`, `timespec_sleep`, etc.
* - `pclose`
* - `popen`
* - `fwrite`, `printf`, `fprintf`, `putc`, etc.
* - `pthread_cond_timedwait`
* - `pthread_cond_wait`
* - `pthread_join`
* - `sem_timedwait`
* - `sem_wait`
* - `sleep`
* - `timespec_sleep_until`
* - `tmpfd`
* - `tmpfile`
* - `usleep`
*
* Other userspace libraries provided by Cosmopolitan Libc that call the
* cancelation points above will block cancellations while running. The
* following are examples of functions that *aren't* cancelation points
*
* - `INFOF()`, `WARNF()`, etc.
* - `getentropy`
* - `gmtime_r`
* - `kprintf` (by virtue of asm(syscall) and write_nocancel() on xnu)
* - `localtime_r`
* - `nsync_mu_lock`
* - `nsync_mu_unlock`
* - `openpty`
* - `pthread_getname_np`
* - `pthread_mutex_lock`
* - `pthread_mutex_unlock`
* - `pthread_setname_np`
* - `sem_open`
* - `system`
* - `openatemp`, 'mkstemp', etc.
* - `timespec_sleep`
* - `touch`
*
* The way to block cancelations temporarily is:
*
* int cs;
* pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cs);
* // ...
* pthread_setcancelstate(cs, 0);
*
* In order to support cancelations all your code needs to be rewritten
* so that when resources such as file descriptors are managed they must
* have a cleanup crew pushed to the stack. For example even malloc() is
* technically unsafe w.r.t. leaks without doing something like this:
*
* void *p = malloc(123);
* pthread_cleanup_push(free, p);
* read(0, p, 123);
* pthread_cleanup_pop(1);
*
* Consider using Cosmopolitan Libc's garbage collector since it will be
* executed when a thread exits due to a cancelation.
*
* void *p = gc(malloc(123));
* read(0, p, 123);
*
* It's possible to put a thread in asynchronous cancelation mode with
*
* pthread_setcancelstate(PTHREAD_CANCEL_ASYNCHRONOUS, 0);
* for (;;) donothing;
*
* In which case a thread may be cancelled at any assembly opcode. This
* is useful for immediately halting threads that consume cpu and don't
* use any system calls. It shouldn't be used on threads that will call
* cancelation points since in that case asynchronous mode could cause
* resource leaks to happen, in such a way that can't be worked around.
*
* If none of the above options seem savory to you, then a third way is
* offered for doing cancelations. Cosmopolitan Libc supports the Musl
* Libc `PTHREAD_CANCEL_MASKED` non-POSIX extension. Any thread may pass
* this setting to pthread_setcancelstate(), in which case threads won't
* be abruptly destroyed upon cancelation and have their stack unwound;
* instead, cancelation points will simply raise an `ECANCELED` error,
* which can be more safely and intuitively handled for many use cases.
* For example:
*
* pthread_setcancelstate(PTHREAD_CANCEL_MASKED, 0);
* void *p = malloc(123);
* int rc = read(0, p, 123);
* free(p);
* if (rc == ECANCELED) {
* pthread_exit(0);
* }
*
* Shows how the masked cancelations paradigm can be safely used. Note
* that it's so important that cancelation point error return codes be
* checked. Code such as the following:
*
* pthread_setcancelstate(PTHREAD_CANCEL_MASKED, 0);
* void *p = malloc(123);
* write(2, "log\n", 4); // XXX: fails to check result
* int rc = read(0, p, 123);
* free(p);
* if (rc == ECANCELED) {
* pthread_exit(0); // XXX: not run if write() was cancelled
* }
*
* Isn't safe to use in masked mode. That's because if a cancelation
* occurs during the write() operation then cancelations are blocked
* while running read(). MASKED MODE DOESN'T HAVE SECOND CHANCES. You
* must rigorously check the results of each cancelation point call.
*
* Unit tests should be able to safely ignore the return value, or at
* the very least be programmed to consider ESRCH a successful status
*
* @param thread may be 0 to cancel all threads except self
* @return 0 on success, or errno on error
* @raise ESRCH if system thread wasn't alive or we lost a race
*/
errno_t pthread_cancel(pthread_t thread) {
struct PosixThread *arg;
if ((arg = (struct PosixThread *)thread)) {
return _pthread_cancel_single(arg);
} else {
return _pthread_cancel_everyone();
}
}
/**
* Creates cancelation point in calling thread.
*
* This function can be used to force `PTHREAD_CANCEL_DEFERRED` threads
* to cancel without needing to invoke an interruptible system call. If
* the calling thread is in the `PTHREAD_CANCEL_DISABLE` then this will
* do nothing. If the calling thread hasn't yet been cancelled, this'll
* do nothing. In `PTHREAD_CANCEL_MASKED` mode, this also does nothing.
*
* @see pthread_testcancel_np()
*/
void pthread_testcancel(void) {
struct PosixThread *pt;
if (!__tls_enabled)
return;
if (!(pt = _pthread_self()))
return;
if (pt->pt_flags & PT_NOCANCEL)
return;
if ((!(pt->pt_flags & PT_MASKED) || (pt->pt_flags & PT_ASYNC)) &&
atomic_load_explicit(&pt->pt_canceled, memory_order_acquire)) {
pthread_exit(PTHREAD_CANCELED);
}
}
/**
* Creates cancelation point in calling thread.
*
* This function can be used to force `PTHREAD_CANCEL_DEFERRED` threads
* to cancel without needing to invoke an interruptible system call. If
* the calling thread is in the `PTHREAD_CANCEL_DISABLE` then this will
* do nothing. If the calling thread hasn't yet been cancelled, this'll
* do nothing. If the calling thread uses `PTHREAD_CANCEL_MASKED`, then
* this function returns `ECANCELED` if a cancelation occurred, rather
* than the normal behavior which is to destroy and cleanup the thread.
* Any `ECANCELED` result must not be ignored, because the thread shall
* have cancelations disabled once it occurs.
*
* @return 0 if not cancelled or cancelation is blocked or `ECANCELED`
* in masked mode when the calling thread has been cancelled
*/
errno_t pthread_testcancel_np(void) {
struct PosixThread *pt;
if (!__tls_enabled)
return 0;
if (!(pt = _pthread_self()))
return 0;
if (pt->pt_flags & PT_NOCANCEL)
return 0;
if (!atomic_load_explicit(&pt->pt_canceled, memory_order_acquire))
return 0;
if (!(pt->pt_flags & PT_MASKED) || (pt->pt_flags & PT_ASYNC)) {
pthread_exit(PTHREAD_CANCELED);
} else {
pt->pt_flags |= PT_NOCANCEL;
return ECANCELED;
}
}