cosmopolitan/libc/calls/sig.c
Jōshin 6e6fc38935
Apply clang-format update to repo (#1154)
Commit bc6c183 introduced a bunch of discrepancies between what files
look like in the repo and what clang-format says they should look like.
However, there were already a few discrepancies prior to that. Most of
these discrepancies seemed to be unintentional, but a few of them were
load-bearing (e.g., a #include that violated header ordering needing
something to have been #defined by a 'later' #include.)

I opted to take what I hope is a relatively smooth-brained approach: I
reverted the .clang-format change, ran clang-format on the whole repo,
reapplied the .clang-format change, reran clang-format again, and then
reverted the commit that contained the first run. Thus the full effect
of this PR should only be to apply the changed formatting rules to the
repo, and from skimming the results, this seems to be the case.

My work can be checked by applying the short, manual commits, and then
rerunning the command listed in the autogenerated commits (those whose
messages I have prefixed auto:) and seeing if your results agree.

It might be that the other diffs should be fixed at some point but I'm
leaving that aside for now.

fd '\.c(c|pp)?$' --print0| xargs -0 clang-format -i
2024-04-25 10:38:00 -07:00

682 lines
23 KiB
C

/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
│ vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi │
╞══════════════════════════════════════════════════════════════════════════════╡
│ Copyright 2022 Justine Alexandra Roberts Tunney │
│ │
│ Permission to use, copy, modify, and/or distribute this software for │
│ any purpose with or without fee is hereby granted, provided that the │
│ above copyright notice and this permission notice appear in all copies. │
│ │
│ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │
│ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │
│ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │
│ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │
│ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │
│ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │
│ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │
│ PERFORMANCE OF THIS SOFTWARE. │
╚─────────────────────────────────────────────────────────────────────────────*/
#include "libc/sysv/consts/sig.h"
#include "ape/sections.internal.h"
#include "libc/calls/calls.h"
#include "libc/calls/sig.internal.h"
#include "libc/calls/state.internal.h"
#include "libc/calls/struct/sigaction.h"
#include "libc/calls/struct/siginfo.h"
#include "libc/calls/struct/sigset.internal.h"
#include "libc/calls/struct/ucontext.internal.h"
#include "libc/calls/ucontext.h"
#include "libc/dce.h"
#include "libc/errno.h"
#include "libc/intrin/atomic.h"
#include "libc/intrin/bsf.h"
#include "libc/intrin/describebacktrace.internal.h"
#include "libc/intrin/dll.h"
#include "libc/intrin/kprintf.h"
#include "libc/intrin/strace.internal.h"
#include "libc/intrin/weaken.h"
#include "libc/nt/console.h"
#include "libc/nt/enum/context.h"
#include "libc/nt/enum/exceptionhandleractions.h"
#include "libc/nt/enum/signal.h"
#include "libc/nt/enum/status.h"
#include "libc/nt/runtime.h"
#include "libc/nt/signals.h"
#include "libc/nt/struct/ntexceptionpointers.h"
#include "libc/nt/synchronization.h"
#include "libc/nt/thread.h"
#include "libc/runtime/symbols.internal.h"
#include "libc/str/str.h"
#include "libc/sysv/consts/sa.h"
#include "libc/sysv/consts/sicode.h"
#include "libc/sysv/consts/ss.h"
#include "libc/thread/posixthread.internal.h"
#ifdef __x86_64__
/**
* @fileoverview Cosmopolitan Signals for Windows.
*/
struct SignalFrame {
unsigned rva;
unsigned flags;
siginfo_t si;
ucontext_t ctx;
};
static textwindows bool __sig_ignored_by_default(int sig) {
return sig == SIGURG || //
sig == SIGCONT || //
sig == SIGCHLD || //
sig == SIGWINCH;
}
textwindows bool __sig_ignored(int sig) {
return __sighandrvas[sig] == (intptr_t)SIG_IGN ||
(__sighandrvas[sig] == (intptr_t)SIG_DFL &&
__sig_ignored_by_default(sig));
}
textwindows void __sig_delete(int sig) {
struct Dll *e;
atomic_fetch_and_explicit(&__sig.pending, ~(1ull << (sig - 1)),
memory_order_relaxed);
BLOCK_SIGNALS;
_pthread_lock();
for (e = dll_last(_pthread_list); e; e = dll_prev(_pthread_list, e)) {
atomic_fetch_and_explicit(&POSIXTHREAD_CONTAINER(e)->tib->tib_sigpending,
~(1ull << (sig - 1)), memory_order_relaxed);
}
_pthread_unlock();
ALLOW_SIGNALS;
}
static textwindows int __sig_getter(atomic_ulong *sigs, sigset_t masked) {
int sig;
sigset_t bit, pending, deliverable;
for (;;) {
pending = atomic_load_explicit(sigs, memory_order_acquire);
if ((deliverable = pending & ~masked)) {
sig = bsfl(deliverable) + 1;
bit = 1ull << (sig - 1);
if (atomic_fetch_and_explicit(sigs, ~bit, memory_order_acq_rel) & bit) {
return sig;
}
} else {
return 0;
}
}
}
textwindows int __sig_get(sigset_t masked) {
int sig;
if (!(sig = __sig_getter(&__get_tls()->tib_sigpending, masked))) {
sig = __sig_getter(&__sig.pending, masked);
}
return sig;
}
static textwindows bool __sig_should_use_altstack(unsigned flags,
struct CosmoTib *tib) {
if (!(flags & SA_ONSTACK)) {
return false; // signal handler didn't enable it
}
if (!tib->tib_sigstack_size) {
return false; // sigaltstack() wasn't installed on this thread
}
if (tib->tib_sigstack_flags & SS_DISABLE) {
return false; // sigaltstack() on this thread was disabled by user
}
char *bp = __builtin_frame_address(0);
if (tib->tib_sigstack_addr <= bp &&
bp <= tib->tib_sigstack_addr + tib->tib_sigstack_size) {
return false; // we're already on the alternate stack
}
return true;
}
static textwindows wontreturn void __sig_terminate(int sig) {
TerminateThisProcess(sig);
}
static textwindows bool __sig_start(struct PosixThread *pt, int sig,
unsigned *rva, unsigned *flags) {
*rva = __sighandrvas[sig];
*flags = __sighandflags[sig];
if (*rva == (intptr_t)SIG_IGN ||
(*rva == (intptr_t)SIG_DFL && __sig_ignored_by_default(sig))) {
STRACE("ignoring %G", sig);
return false;
}
if (atomic_load_explicit(&pt->tib->tib_sigmask, memory_order_acquire) &
(1ull << (sig - 1))) {
STRACE("enqueing %G on %d", sig, _pthread_tid(pt));
atomic_fetch_or_explicit(&pt->tib->tib_sigpending, 1ull << (sig - 1),
memory_order_relaxed);
return false;
}
if (*rva == (intptr_t)SIG_DFL) {
STRACE("terminating on %G due to no handler", sig);
__sig_terminate(sig);
}
return true;
}
static textwindows sigaction_f __sig_handler(unsigned rva) {
atomic_fetch_add_explicit(&__sig.count, 1, memory_order_relaxed);
return (sigaction_f)(__executable_start + rva);
}
textwindows int __sig_raise(volatile int sig, int sic) {
// bitset of kinds of handlers called
volatile int handler_was_called = 0;
// loop over pending signals
ucontext_t ctx;
getcontext(&ctx);
if (!sig) {
if ((sig = __sig_get(ctx.uc_sigmask))) {
sic = SI_KERNEL;
} else {
return handler_was_called;
}
}
// process signal(s)
unsigned rva, flags;
struct PosixThread *pt = _pthread_self();
if (__sig_start(pt, sig, &rva, &flags)) {
if (flags & SA_RESETHAND) {
STRACE("resetting %G handler", sig);
__sighandrvas[sig] = (int32_t)(intptr_t)SIG_DFL;
}
// update the signal mask in preparation for signal handller
sigset_t blocksigs = __sighandmask[sig];
if (!(flags & SA_NODEFER))
blocksigs |= 1ull << (sig - 1);
ctx.uc_sigmask = atomic_fetch_or_explicit(&pt->tib->tib_sigmask, blocksigs,
memory_order_acquire);
// call the user's signal handler
char ssbuf[128];
siginfo_t si = {.si_signo = sig, .si_code = sic};
STRACE("__sig_raise(%G, %t) mask %s", sig, __sig_handler(rva),
(DescribeSigset)(ssbuf, 0, (sigset_t *)&pt->tib->tib_sigmask));
__sig_handler(rva)(sig, &si, &ctx);
// record this handler
if (flags & SA_RESTART) {
handler_was_called |= SIG_HANDLED_SA_RESTART;
} else {
handler_was_called |= SIG_HANDLED_NO_RESTART;
}
}
// restore sigmask
// loop back to top
// jump where handler says
sig = 0;
return setcontext(&ctx);
}
textwindows int __sig_relay(int sig, int sic, sigset_t waitmask) {
sigset_t m;
int handler_was_called;
m = atomic_exchange_explicit(&__get_tls()->tib_sigmask, waitmask,
memory_order_acquire);
handler_was_called = __sig_raise(sig, SI_KERNEL);
atomic_store_explicit(&__get_tls()->tib_sigmask, m, memory_order_release);
return handler_was_called;
}
// cancels blocking operations being performed by signaled thread
textwindows void __sig_cancel(struct PosixThread *pt, int sig, unsigned flags) {
atomic_int *blocker;
blocker = atomic_load_explicit(&pt->pt_blocker, memory_order_acquire);
if (!blocker) {
STRACE("%G sent to %d asynchronously", sig, _pthread_tid(pt));
return;
}
// we can cancel another thread's overlapped i/o op after the freeze
if (blocker == PT_BLOCKER_IO) {
STRACE("%G canceling %d's i/o", sig, _pthread_tid(pt));
CancelIoEx(pt->pt_iohandle, pt->pt_ioverlap);
return;
}
// threads can create semaphores on an as-needed basis
if (blocker == PT_BLOCKER_SEM) {
STRACE("%G releasing %d's semaphore", sig, _pthread_tid(pt));
ReleaseSemaphore(pt->pt_semaphore, 1, 0);
return;
}
// all other blocking ops that aren't overlap should use futexes
// we force restartable futexes to churn by waking w/o releasing
STRACE("%G waking %d's futex", sig, _pthread_tid(pt));
WakeByAddressSingle(blocker);
}
// the user's signal handler callback is wrapped with this trampoline
static textwindows wontreturn void __sig_tramp(struct SignalFrame *sf) {
int sig = sf->si.si_signo;
struct CosmoTib *tib = __get_tls();
struct PosixThread *pt = (struct PosixThread *)tib->tib_pthread;
for (;;) {
// update the signal mask in preparation for signal handller
sigset_t blocksigs = __sighandmask[sig];
if (!(sf->flags & SA_NODEFER))
blocksigs |= 1ull << (sig - 1);
sf->ctx.uc_sigmask = atomic_fetch_or_explicit(&tib->tib_sigmask, blocksigs,
memory_order_acquire);
// call the user's signal handler
char ssbuf[2][128];
STRACE("__sig_tramp(%G, %t) mask %s → %s", sig, __sig_handler(sf->rva),
(DescribeSigset)(ssbuf[0], 0, &sf->ctx.uc_sigmask),
(DescribeSigset)(ssbuf[1], 0, (sigset_t *)&tib->tib_sigmask));
__sig_handler(sf->rva)(sig, &sf->si, &sf->ctx);
// restore the signal mask that was used by the interrupted code
// this may have been modified by the signal handler in the callback
atomic_store_explicit(&tib->tib_sigmask, sf->ctx.uc_sigmask,
memory_order_release);
// jump back into original code if there aren't any pending signals
do {
if (!(sig = __sig_get(sf->ctx.uc_sigmask))) {
__sig_restore(&sf->ctx);
}
} while (!__sig_start(pt, sig, &sf->rva, &sf->flags));
// tail recurse into another signal handler
sf->si.si_signo = sig;
sf->si.si_code = SI_KERNEL;
if (sf->flags & SA_RESETHAND) {
STRACE("resetting %G handler", sig);
__sighandrvas[sig] = (int32_t)(intptr_t)SIG_DFL;
}
}
}
// sends signal to another specific thread which is ref'd
static int __sig_killer(struct PosixThread *pt, int sig, int sic) {
unsigned rva = __sighandrvas[sig];
unsigned flags = __sighandflags[sig];
// do nothing if signal is ignored
if (rva == (intptr_t)SIG_IGN ||
(rva == (intptr_t)SIG_DFL && __sig_ignored_by_default(sig))) {
STRACE("ignoring %G", sig);
return 0;
}
// if there's no handler then killing a thread kills the process
if (rva == (intptr_t)SIG_DFL) {
STRACE("terminating on %G due to no handler", sig);
__sig_terminate(sig);
}
// ignore signals already pending
uintptr_t th = _pthread_syshand(pt);
if (atomic_load_explicit(&pt->tib->tib_sigpending, memory_order_acquire) &
(1ull << (sig - 1))) {
return 0;
}
// take control of thread
// suspending the thread happens asynchronously
// however getting the context blocks until it's frozen
static pthread_spinlock_t killer_lock;
pthread_spin_lock(&killer_lock);
if (SuspendThread(th) == -1u) {
STRACE("SuspendThread failed w/ %d", GetLastError());
pthread_spin_unlock(&killer_lock);
return ESRCH;
}
struct NtContext nc;
nc.ContextFlags = kNtContextFull;
if (!GetThreadContext(th, &nc)) {
STRACE("GetThreadContext failed w/ %d", GetLastError());
ResumeThread(th);
pthread_spin_unlock(&killer_lock);
return ESRCH;
}
pthread_spin_unlock(&killer_lock);
// we can't preempt threads that masked sig or are blocked
// we can't preempt threads that are running in win32 code
// so we shall unblock the thread and let it signal itself
if ((atomic_load_explicit(&pt->tib->tib_sigmask, memory_order_acquire) &
(1ull << (sig - 1))) ||
!((uintptr_t)__executable_start <= nc.Rip &&
nc.Rip < (uintptr_t)__privileged_start)) {
atomic_fetch_or_explicit(&pt->tib->tib_sigpending, 1ull << (sig - 1),
memory_order_relaxed);
ResumeThread(th);
__sig_cancel(pt, sig, flags);
return 0;
}
// preferring to live dangerously
// the thread will be signaled asynchronously
if (flags & SA_RESETHAND) {
STRACE("resetting %G handler", sig);
__sighandrvas[sig] = (int32_t)(intptr_t)SIG_DFL;
}
// inject call to trampoline function into thread
uintptr_t sp;
if (__sig_should_use_altstack(flags, pt->tib)) {
sp = (uintptr_t)pt->tib->tib_sigstack_addr + pt->tib->tib_sigstack_size;
} else {
sp = nc.Rsp;
}
sp -= sizeof(struct SignalFrame);
sp &= -16;
struct SignalFrame *sf = (struct SignalFrame *)sp;
_ntcontext2linux(&sf->ctx, &nc);
bzero(&sf->si, sizeof(sf->si));
sf->rva = rva;
sf->flags = flags;
sf->si.si_code = sic;
sf->si.si_signo = sig;
*(uintptr_t *)(sp -= sizeof(uintptr_t)) = nc.Rip;
nc.Rip = (intptr_t)__sig_tramp;
nc.Rdi = (intptr_t)sf;
nc.Rsp = sp;
if (!SetThreadContext(th, &nc)) {
STRACE("SetThreadContext failed w/ %d", GetLastError());
return ESRCH;
}
ResumeThread(th);
__sig_cancel(pt, sig, flags);
return 0;
}
// sends signal to another specific thread
textwindows int __sig_kill(struct PosixThread *pt, int sig, int sic) {
int rc;
BLOCK_SIGNALS;
_pthread_ref(pt);
rc = __sig_killer(pt, sig, sic);
_pthread_unref(pt);
ALLOW_SIGNALS;
return rc;
}
// sends signal to any other thread
textwindows void __sig_generate(int sig, int sic) {
struct Dll *e;
struct PosixThread *pt, *mark = 0;
if (__sig_ignored(sig)) {
STRACE("ignoring %G", sig);
return;
}
if (__sighandrvas[sig] == (intptr_t)SIG_DFL) {
STRACE("terminating on %G due to no handler", sig);
__sig_terminate(sig);
}
if (atomic_load_explicit(&__sig.pending, memory_order_acquire) &
(1ull << (sig - 1))) {
return;
}
BLOCK_SIGNALS;
_pthread_lock();
for (e = dll_first(_pthread_list); e; e = dll_next(_pthread_list, e)) {
pt = POSIXTHREAD_CONTAINER(e);
// we don't want to signal ourself
if (pt == _pthread_self())
continue;
// we don't want to signal a thread that isn't running
if (atomic_load_explicit(&pt->pt_status, memory_order_acquire) >=
kPosixThreadTerminated) {
continue;
}
// choose this thread if it isn't masking sig
if (!(atomic_load_explicit(&pt->tib->tib_sigmask, memory_order_acquire) &
(1ull << (sig - 1)))) {
_pthread_ref(pt);
mark = pt;
break;
}
// if a thread is blocking then we check to see if it's planning
// to unblock our sig once the wait operation is completed; when
// that's the case we can cancel the thread's i/o to deliver sig
if (atomic_load_explicit(&pt->pt_blocker, memory_order_acquire) &&
!(pt->pt_blkmask & (1ull << (sig - 1)))) {
_pthread_ref(pt);
mark = pt;
break;
}
}
_pthread_unlock();
if (mark) {
__sig_killer(mark, sig, sic);
_pthread_unref(mark);
} else {
atomic_fetch_or_explicit(&__sig.pending, 1ull << (sig - 1),
memory_order_relaxed);
}
ALLOW_SIGNALS;
}
static int __sig_crash_sig(struct NtExceptionPointers *ep, int *code) {
switch (ep->ExceptionRecord->ExceptionCode) {
case kNtSignalBreakpoint:
*code = TRAP_BRKPT;
return SIGTRAP;
case kNtSignalIllegalInstruction:
*code = ILL_ILLOPC;
return SIGILL;
case kNtSignalPrivInstruction:
*code = ILL_PRVOPC;
return SIGILL;
case kNtSignalInPageError:
case kNtStatusStackOverflow:
*code = SEGV_MAPERR;
return SIGSEGV;
case kNtSignalGuardPage:
case kNtSignalAccessViolation:
*code = SEGV_ACCERR;
return SIGSEGV;
case kNtSignalInvalidHandle:
case kNtSignalInvalidParameter:
case kNtSignalAssertionFailure:
*code = SI_USER;
return SIGABRT;
case kNtStatusIntegerOverflow:
*code = FPE_INTOVF;
return SIGFPE;
case kNtSignalFltDivideByZero:
*code = FPE_FLTDIV;
return SIGFPE;
case kNtSignalFltOverflow:
*code = FPE_FLTOVF;
return SIGFPE;
case kNtSignalFltUnderflow:
*code = FPE_FLTUND;
return SIGFPE;
case kNtSignalFltInexactResult:
*code = FPE_FLTRES;
return SIGFPE;
case kNtSignalFltDenormalOperand:
case kNtSignalFltInvalidOperation:
case kNtSignalFltStackCheck:
case kNtSignalIntegerDivideByZero:
case kNtSignalFloatMultipleFaults:
case kNtSignalFloatMultipleTraps:
*code = FPE_FLTINV;
return SIGFPE;
case kNtSignalDllNotFound:
case kNtSignalOrdinalNotFound:
case kNtSignalEntrypointNotFound:
case kNtSignalDllInitFailed:
*code = SI_KERNEL;
return SIGSYS;
default:
*code = ep->ExceptionRecord->ExceptionCode;
return SIGSEGV;
}
}
static char *__sig_stpcpy(char *d, const char *s) {
size_t i;
for (i = 0;; ++i) {
if (!(d[i] = s[i])) {
return d + i;
}
}
}
static void __sig_unmaskable(struct NtExceptionPointers *ep, int code, int sig,
struct CosmoTib *tib) {
// log vital crash information reliably for --strace before doing much
// we don't print this without the flag since raw numbers scare people
// this needs at least one page of stack memory in order to get logged
// otherwise it'll print a warning message about the lack of stack mem
STRACE("win32 vectored exception 0x%08Xu raising %G "
"cosmoaddr2line %s %lx %s",
ep->ExceptionRecord->ExceptionCode, sig,
_weaken(FindDebugBinary) ? _weaken(FindDebugBinary)()
: program_invocation_name,
ep->ContextRecord->Rip,
DescribeBacktrace((struct StackFrame *)ep->ContextRecord->Rbp));
// if the user didn't install a signal handler for this unmaskable
// exception, then print a friendly helpful hint message to stderr
unsigned rva = __sighandrvas[sig];
if (rva == (intptr_t)SIG_DFL || rva == (intptr_t)SIG_IGN) {
#ifndef TINY
intptr_t hStderr;
char sigbuf[21], s[128], *p;
hStderr = GetStdHandle(kNtStdErrorHandle);
p = __sig_stpcpy(s, "Terminating on uncaught ");
p = __sig_stpcpy(p, strsignal_r(sig, sigbuf));
p = __sig_stpcpy(
p, ". Pass --strace and/or ShowCrashReports() for details.\n");
WriteFile(hStderr, s, p - s, 0, 0);
#endif
__sig_terminate(sig);
}
// if this signal handler is configured to auto-reset to the default
// then that reset needs to happen before the user handler is called
unsigned flags = __sighandflags[sig];
if (flags & SA_RESETHAND) {
STRACE("resetting %G handler", sig);
__sighandrvas[sig] = (int32_t)(intptr_t)SIG_DFL;
}
// determine the true memory address at which fault occurred
// if this is a stack overflow then reapply guard protection
void *si_addr;
if (ep->ExceptionRecord->ExceptionCode == kNtSignalGuardPage) {
si_addr = (void *)ep->ExceptionRecord->ExceptionInformation[1];
} else {
si_addr = ep->ExceptionRecord->ExceptionAddress;
}
// call the user signal handler
// with a temporarily replaced signal mask
// and a modifiable view of the faulting code's cpu state
// note ucontext_t is a hefty data structures on top of NtContext
ucontext_t ctx = {0};
siginfo_t si = {.si_signo = sig, .si_code = code, .si_addr = si_addr};
_ntcontext2linux(&ctx, ep->ContextRecord);
sigset_t blocksigs = __sighandmask[sig];
if (!(flags & SA_NODEFER))
blocksigs |= 1ull << (sig - 1);
ctx.uc_sigmask = atomic_fetch_or_explicit(&tib->tib_sigmask, blocksigs,
memory_order_acquire);
__sig_handler(rva)(sig, &si, &ctx);
atomic_store_explicit(&tib->tib_sigmask, ctx.uc_sigmask,
memory_order_release);
_ntlinux2context(ep->ContextRecord, &ctx);
}
void __stack_call(struct NtExceptionPointers *, int, int, struct CosmoTib *,
void (*)(struct NtExceptionPointers *, int, int,
struct CosmoTib *),
void *);
// abashed the devil stood
// and felt how awful goodness is
__msabi dontinstrument unsigned __sig_crash(struct NtExceptionPointers *ep) {
// translate win32 to unix si_signo and si_code
int code, sig = __sig_crash_sig(ep, &code);
// advance the instruction pointer to skip over debugger breakpoints
// this behavior is consistent with how unix kernels are implemented
if (sig == SIGTRAP) {
ep->ContextRecord->Rip++;
if (__sig_ignored(sig)) {
return kNtExceptionContinueExecution;
}
}
// win32 stack overflow detection executes INSIDE the guard page
// thus switch to the alternate signal stack as soon as possible
struct CosmoTib *tib = __get_tls();
unsigned flags = __sighandflags[sig];
if (__sig_should_use_altstack(flags, tib)) {
__stack_call(ep, code, sig, tib, __sig_unmaskable,
tib->tib_sigstack_addr + tib->tib_sigstack_size);
} else {
__sig_unmaskable(ep, code, sig, tib);
}
// resume running user program
// hopefully the user fixed the cpu state
// otherwise the crash will keep happening
return kNtExceptionContinueExecution;
}
static textwindows int __sig_console_sig(uint32_t dwCtrlType) {
switch (dwCtrlType) {
case kNtCtrlCEvent:
return SIGINT;
case kNtCtrlBreakEvent:
return SIGQUIT;
case kNtCtrlCloseEvent:
case kNtCtrlLogoffEvent: // only received by services
case kNtCtrlShutdownEvent: // only received by services
return SIGHUP;
default:
return SIGSTKFLT;
}
}
__msabi textwindows dontinstrument bool32 __sig_console(uint32_t dwCtrlType) {
struct CosmoTib tls;
__bootstrap_tls(&tls, __builtin_frame_address(0));
__sig_generate(__sig_console_sig(dwCtrlType), SI_KERNEL);
return true;
}
// returns 0 if no signal handlers were called, otherwise a bitmask
// consisting of `1` which means a signal handler was invoked which
// didn't have the SA_RESTART flag, and `2`, which means SA_RESTART
// handlers were called (or `3` if both were the case).
textwindows int __sig_check(void) {
int sig;
if ((sig = __sig_get(atomic_load_explicit(&__get_tls()->tib_sigmask,
memory_order_acquire)))) {
return __sig_raise(sig, SI_KERNEL);
} else {
return 0;
}
}
__attribute__((__constructor__(10))) textstartup void __sig_init(void) {
if (!IsWindows())
return;
AddVectoredExceptionHandler(true, (void *)__sig_crash);
SetConsoleCtrlHandler((void *)__sig_console, true);
}
#endif /* __x86_64__ */